
Relations Characteristics Problems

Object-Oriented Approaches to Programming
e Aggregation, Composition, Inheritance E

Didier Verna

didier@didierverna.net

didierverna.net @didierverna didier.verna in/didierverna

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

mailto:didier@didierverna.net
http://didierverna.net
http://www.twitter.com/didierverna
http://www.facebook.com/didier.verna
http://www.linkedin.com/in/didierverna
https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Outline

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 2/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 3/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Copy / Paste

Example

Human
-name : string
-size : float
-birth_year : unsigned
-company : string
-salary : unsigned
+age () : unsigned
+hello () : void

Employee
-name : string
-size : float
-birth_year : unsigned
-company : string
-salary : unsigned
+age () : unsigned
+hello () : void

😠

Very bad approach!

OAP / Aggregation, Composition, Inheritance 4/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 5/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Aggregation
I A kind of inclusion

I Aggregate: maintenance of references / pointers to aggregated objets

Example
Human

-name : string
-size : float
-birth_year : unsigned
+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned
-person : Human*

😕

Not very fit for this example
I Relation “set / elements” (transitive)
I The aggregated survives its aggregate

OAP / Aggregation, Composition, Inheritance 6/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Aggregation
I A kind of inclusion

I Aggregate: maintenance of references / pointers to aggregated objets

Better Example

Player

Team

size () : unsigned
hire (player : Player*) : void
fire (player : Player*) : void

OAP / Aggregation, Composition, Inheritance 7/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Aggregation
I A kind of inclusion

I Aggregate: maintenance of references / pointers to aggregated objets

Better Example

Player

Team

size () : unsigned
hire (player : Player*) : void
fire (player : Player*) : void

OAP / Aggregation, Composition, Inheritance 7/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
class Player {};

using player_set = std::unordered_set<const Player*>;
class Team
{
public:

player_set::size_type size () const;
void hire (const Player& player);
void fire (const Player& player);

private:
player_set members;

};

player_set::size_type Team::size () const { return members.size (); }

void Team::hire (const Player& player) { members.insert (&player); }
void Team::fire (const Player& player) { members.erase (&player); }

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Aggregation
I A kind of inclusion

I Aggregate: maintenance of references / pointers to aggregated objets

Better Example

Player

Team

size () : unsigned
hire (player : Player*) : void
fire (player : Player*) : void

OAP / Aggregation, Composition, Inheritance 7/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
public class Player {}

public class Team
{

public Team () { members = new HashSet<Player> (); }

public int size () { return members.size (); }

public void hire (Player player) { members.add (player); }
public void fire (Player player) { members.remove (player); }

private HashSet<Player> members;
}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 8/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Composition (Composite Aggregation)
I A stricter form of inclusion

I The aggregated does not survive its (unique) aggregate

Example
Human

-name : string
-size : float
-birth_year : unsigned
+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned
-person : Human

😕

Still not very fit for this example
I Access to the Human part is (still) indirect

OAP / Aggregation, Composition, Inheritance 9/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Composition (Composite Aggregation)
I A stricter form of inclusion

I The aggregated does not survive its (unique) aggregate

Better Example

Head Body

OAP / Aggregation, Composition, Inheritance 10/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Composition (Composite Aggregation)
I A stricter form of inclusion

I The aggregated does not survive its (unique) aggregate

Better Example

Head Body

OAP / Aggregation, Composition, Inheritance 10/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
class Head {};
class Arm {};
class Leg {};

class Body
{
private:

Head head;
Arm arms[2];
Leg legs[2];

};

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Composition (Composite Aggregation)
I A stricter form of inclusion

I The aggregated does not survive its (unique) aggregate

Better Example

Head Body

OAP / Aggregation, Composition, Inheritance 10/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
public class Head {}
public class Arm {}
public class Leg {}

public class Body
{

public Body ()
{

head = new Head ();
arms = new Arm[2]; // ...
legs = new Leg[2]; // ...

}

private Head head;
private Arm[] arms;
private Leg[] legs;

}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 11/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Inheritance / Derivation

I An even stricter form of inclusion
I Aggregated contents directly incorporated into the

class
🙂

Best solution here
I No risk related to manual duplication
I No intermediate object (aggregated)
I The contents of class Human belongs implicitly to class

Employee as well (except for constructors /
destructors)

I Class Employee “inherits” or “derives” from class
Human

😉

Not far from (automatic) cut’n paste

Example
Human

-name : string
-size : float
-birth_year : unsigned
+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

Superclass

Subclass

OAP / Aggregation, Composition, Inheritance 12/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Inheritance / Derivation

I An even stricter form of inclusion
I Aggregated contents directly incorporated into the

class
🙂

Best solution here
I No risk related to manual duplication
I No intermediate object (aggregated)
I The contents of class Human belongs implicitly to class

Employee as well (except for constructors /
destructors)

I Class Employee “inherits” or “derives” from class
Human

😉

Not far from (automatic) cut’n paste

Example
Human

-name : string
-size : float
-birth_year : unsigned
+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

Superclass

Subclass

OAP / Aggregation, Composition, Inheritance 12/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
class Employee : public Human
{
public:

Employee (const std::string& name, float size, unsigned birth_year,
const std::string& company, unsigned salary);

~Employee ();

private:
std::string company_;
unsigned salary_;

};

Employee::Employee (const std::string& name, float size, unsigned birth_year,
const std::string& company, unsigned salary)

: Human (name, size, birth_year), company_ (company), salary_ (salary)
{}

Employee::~Employee ()
{}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Inheritance / Derivation

I An even stricter form of inclusion
I Aggregated contents directly incorporated into the

class
🙂

Best solution here
I No risk related to manual duplication
I No intermediate object (aggregated)
I The contents of class Human belongs implicitly to class

Employee as well (except for constructors /
destructors)

I Class Employee “inherits” or “derives” from class
Human

😉

Not far from (automatic) cut’n paste

Example
Human

-name : string
-size : float
-birth_year : unsigned
+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

Superclass

Subclass

OAP / Aggregation, Composition, Inheritance 12/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
public class Employee extends Human
{

public Employee (String _name, float _size, int _birthYear,
String _company, int _salary)

{
super (_name, _size, _birthYear);
company = _company;
salary = _salary;

}

private String company;
private int salary;

}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 13/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Characteristics of Inheritance

I Aggregation: “has a” relationship
I A team has a player, a body has a head, etc.

I Inheritance: “is a” relationship
I An employee is a human

I Consequence
I Inheritance looks like sub-typing

I Every employee can be seen as a simple human
I The actual class of an object does not need to be

known at compile-time any longer
⚠️

But “looks like” only!
Cf. the Liskov substitution principle [Liskov, 1988]

Example
Human

-name : string
-size : float
-birth_year : unsigned

+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

OAP / Aggregation, Composition, Inheritance 14/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Characteristics of Inheritance

I Aggregation: “has a” relationship
I A team has a player, a body has a head, etc.

I Inheritance: “is a” relationship
I An employee is a human

I Consequence
I Inheritance looks like sub-typing

I Every employee can be seen as a simple human
I The actual class of an object does not need to be

known at compile-time any longer
⚠️

But “looks like” only!
Cf. the Liskov substitution principle [Liskov, 1988]

Example
Human

-name : string
-size : float
-birth_year : unsigned

+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

OAP / Aggregation, Composition, Inheritance 15/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
auto h = Human { "Alain Térieur", 1.80, 1970 };
h.census ();
h.hello ();
birth_control (h);
std::cout << std::endl;

auto e = Employee { "Alex Térieur", 1.78, 1975, "EPITA", 2400 };
e.census ();
e.hello ();
birth_control (e);
std::cout << std::endl;

Human* incognito = new Employee ("Vladimir Guez", 1.85, 1980, "Ionis", 2500);
incognito->census ();
incognito->hello ();
birth_control (*incognito);
std::cout << std::endl;

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Characteristics of Inheritance

I Aggregation: “has a” relationship
I A team has a player, a body has a head, etc.

I Inheritance: “is a” relationship
I An employee is a human

I Consequence
I Inheritance looks like sub-typing

I Every employee can be seen as a simple human
I The actual class of an object does not need to be

known at compile-time any longer
⚠️

But “looks like” only!
Cf. the Liskov substitution principle [Liskov, 1988]

Example
Human

-name : string
-size : float
-birth_year : unsigned

+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

OAP / Aggregation, Composition, Inheritance 15/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
Human h = new Human ("Alain Térieur", 1.80f, 1970);
h.census ();
h.hello ();
System.out.println ();

Employee e = new Employee ("Alex Térieur", 1.78f, 1975, "EPITA", 2400);
e.census ();
e.hello ();
System.out.println ();

Human incognito = new Employee ("Vladimir Guez", 1.85f, 1980, "Ionis", 2500);
incognito.census ();
incognito.hello ();
System.out.println ();

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Characteristics of Inheritance

I Aggregation: “has a” relationship
I A team has a player, a body has a head, etc.

I Inheritance: “is a” relationship
I An employee is a human

I Consequence
I Inheritance looks like sub-typing

I Every employee can be seen as a simple human
I The actual class of an object does not need to be

known at compile-time any longer
⚠️

But “looks like” only!
Cf. the Liskov substitution principle [Liskov, 1988]

Example
Human

-name : string
-size : float
-birth_year : unsigned

+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

OAP / Aggregation, Composition, Inheritance 15/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
const Human& unpredictable ()
{

static const auto h
= Human { "Corinne Titgoutte", 1.68, 1985 };

static const auto e
= Employee { "Justine Titgoutte", 1.83, 1990, "EPITA", 2600 };

return (rand () % 2) ? e : h;
}

const Human& dont_know = unpredictable ();

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Characteristics of Inheritance

I Aggregation: “has a” relationship
I A team has a player, a body has a head, etc.

I Inheritance: “is a” relationship
I An employee is a human

I Consequence
I Inheritance looks like sub-typing

I Every employee can be seen as a simple human
I The actual class of an object does not need to be

known at compile-time any longer
⚠️

But “looks like” only!
Cf. the Liskov substitution principle [Liskov, 1988]

Example
Human

-name : string
-size : float
-birth_year : unsigned

+age () : unsigned
+hello () : void

Employee
-company : string
-salary : unsigned

OAP / Aggregation, Composition, Inheritance 15/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
public class Unpredictable
{

public static Human get () { return random.nextBoolean () ? e : h; }

private static Random random = new Random ();
private static Human h = new Human ("Corinne Titgoutte", 1.68f, 1985);
private static Employee e
= new Employee ("Justine Titgoutte", 1.83f, 1990, "EPITA", 2600);

}

Human dontKnow = Unpredictable.get ();

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 16/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Class Hierarchies

Example
Animal

Oviparous Mammal

Fish Bird Cat Dog
Platypus

I Inheritance is a transitive relation
I Multiple inheritance (not always available): several super-classes
I Class hierarchy: oriented inheritance tree (or graph)

OAP / Aggregation, Composition, Inheritance 17/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Class Hierarchies

Example
Animal

Oviparous Mammal

Fish Bird Cat Dog
Platypus

I Inheritance is a transitive relation
I Multiple inheritance (not always available): several super-classes
I Class hierarchy: oriented inheritance tree (or graph)

OAP / Aggregation, Composition, Inheritance 18/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
class Animal {};

class Oviparous : public Animal {};
class Bird : public Oviparous {};
class Fish : public Oviparous {};

class Mammal : public Animal {};
class Cat : public Mammal {};
class Dog : public Mammal {};

class Platypus : public Oviparous, public Mammal {};

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 19/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Instantiation Policies

Example
Animal

Oviparous Mammal

Fish Bird Cat Dog
Platypus

{leaf}

Abstract Class:
Italics or {abstract}

Final Class:
{leaf}

I Abstract Class: not instantiable
I Final Class: non derivable

Additional technical benefits: safety, performance

OAP / Aggregation, Composition, Inheritance 20/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Instantiation Policies

Example
Animal

Oviparous Mammal

Fish Bird Cat Dog
Platypus

{leaf}

Abstract Class:
Italics or {abstract}

Final Class:
{leaf}

I Abstract Class: not instantiable
I Final Class: non derivable

Additional technical benefits: safety, performance

OAP / Aggregation, Composition, Inheritance 21/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
class Animal
{
public:

// Make this class abstract.
virtual void cry () const = 0;

};

// Also abstract.
class Mammal : public Animal {};
class Cat : public Mammal
{
public:

// Not abstract anymore.
void cry () const override { std::cout << "Meow! Meow!\n"; };

};

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Instantiation Policies

Example
Animal

Oviparous Mammal

Fish Bird Cat Dog
Platypus

{leaf}

Abstract Class:
Italics or {abstract}

Final Class:
{leaf}

I Abstract Class: not instantiable
I Final Class: non derivable

Additional technical benefits: safety, performance

OAP / Aggregation, Composition, Inheritance 21/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
public abstract class Animal {}
public abstract class Mammal extends Animal {}
public class Cat extends Mammal
{

void cry () { System.out.println ("Meow! Meow!"); }
}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Instantiation Policies

Example
Animal

Oviparous Mammal

Fish Bird Cat Dog
Platypus

{leaf}

Abstract Class:
Italics or {abstract}

Final Class:
{leaf}

I Abstract Class: not instantiable
I Final Class: non derivable

Additional technical benefits: safety, performance

OAP / Aggregation, Composition, Inheritance 21/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
// Final class (C++11).
class Platypus final : public Oviparous, public Mammal
{
public:

// Not abstract anymore.
void cry () const override { std::cout << "Platty! Platty!\n"; };

};

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Instantiation Policies

Example
Animal

Oviparous Mammal

Fish Bird Cat Dog
Platypus

{leaf}

Abstract Class:
Italics or {abstract}

Final Class:
{leaf}

I Abstract Class: not instantiable
I Final Class: non derivable

Additional technical benefits: safety, performance

OAP / Aggregation, Composition, Inheritance 21/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
public final class Platypus extends Animal
{

void cry () { System.out.println ("Platty! Platty!"); }
}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 22/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Accessibility and Inheritance

I Protected Attribute / Method:
acces restricted to the class sub-hierarchy

I Remark: Public interface + protected
attributes = closest form to the principle of
sub-typing

Example
Human

#birth_year : unsigned
+age () : unsigned

Employee
-hiring_year : unsigned

+hiring_age () : unsigned

Protected:
preceded by a

“#”

OAP / Aggregation, Composition, Inheritance 23/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Accessibility and Inheritance

I Protected Attribute / Method:
acces restricted to the class sub-hierarchy

I Remark: Public interface + protected
attributes = closest form to the principle of
sub-typing

Example
Human

#birth_year : unsigned
+age () : unsigned

Employee
-hiring_year : unsigned

+hiring_age () : unsigned

Protected:
preceded by a

“#”

OAP / Aggregation, Composition, Inheritance 23/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
class Human
{
protected:

const unsigned birth_year_;
};

class Employee : public Human
{
public:

unsigned hiring_age () const;

private:
unsigned hiring_year_;

};

unsigned Employee::hiring_age () const
{

return hiring_year_ - birth_year_;
}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Accessibility and Inheritance

I Protected Attribute / Method:
acces restricted to the class sub-hierarchy

I Remark: Public interface + protected
attributes = closest form to the principle of
sub-typing

Example
Human

#birth_year : unsigned
+age () : unsigned

Employee
-hiring_year : unsigned

+hiring_age () : unsigned

Protected:
preceded by a

“#”

OAP / Aggregation, Composition, Inheritance 23/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

Java
public class Human
{

protected final int birthYear;
}

public class Employee extends Human
{

public int hiringAge () { return hiringYear - birthYear; }
private int hiringYear;

}

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 24/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 25/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Inheritance and Instantiation

⚠️

Manipulate the relation “is a” with caution
I An employee is a (kind of) human
I Alex is an employee (in particular)

Example
Human

Employee

alex:Employee

«instanceof»

OAP / Aggregation, Composition, Inheritance 26/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 27/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Ambivalence of Inheritance

I Problems:
1. Exposition of the implementation
2. Inheritance of the list’s interface

I Two effects of sub-classing:
1. Inheritance of implementation

code reusability
2. Inheritance of interface

semantics, sub-typing

⚠️

Implementation inheritance entails
interface inheritance

I Favor composition over inheritance
A stack is not a list

Example
List

+insert (val : obj, pos : int) : void
+remove (pos : int) : obj

Stack

-data : List

+push (val : obj) : void
+pop () : obj

OAP / Aggregation, Composition, Inheritance 28/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Remark: “Private” Inheritance

C++
class List
{
public:

void insert (obj val, int pos);
obj remove (int pos);

};

class Stack : public private List
{
public:

void push (obj val) { insert (val, 0); };
obj pop () { return remove (0); }

};

I “Is implemented in terms of” relation
I Favor composition, still

OAP / Aggregation, Composition, Inheritance 29/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Inheritance by Restriction

I The square rectangle (elliptic circle) problem
I A square is a rectangle…
I …although with static constraints…
I …and dynamic ones

I Differential Programming:
I Inherit in an additive (not restrictive) manner
I Problem mostly related to mutation

I Cf. Liskov substitution principle [Liskov, 1988]

Example
Rectangle

#width : unsigned
#height : unsigned

+set_width (unsigned) : void

Square

OAP / Aggregation, Composition, Inheritance 30/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Plan

Relations between Classes
Aggregation
Composition
Inheritance

Characteristics of Inheritance
Class Hierarchies
Instantiation Policies
Accessibility

Inheritance Problems
Inheritance and Instantiation
Ambivalence of Inheritance
Multiple Inheritance

OAP / Aggregation, Composition, Inheritance 31/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Multiple Inheritance Ambiguities

Example

Platypus

Oviparous
-weight : unsigned

+nurse () : void
+weight () : unsigned

Mammal
-weight : unsigned

+nurse () : void
+weight () : unsigned

I Which method(s) to choose (nurse) ?
I Why would there be several (weight) ?
I Those remarks apply to attributes as well

OAP / Aggregation, Composition, Inheritance 32/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Multiple Inheritance Ambiguities

Example

Platypus

Oviparous
-weight : unsigned

+nurse () : void
+weight () : unsigned

Mammal
-weight : unsigned

+nurse () : void
+weight () : unsigned

I Which method(s) to choose (nurse) ?
I Why would there be several (weight) ?
I Those remarks apply to attributes as well

OAP / Aggregation, Composition, Inheritance 33/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

C++
class Oviparous
{
public:

void nurse () const { std::cout << "I brood my eggs.\n"; }
};

class Mammal
{
public:

void nurse () const { std::cout << "I suckle my offsprings.\n"; }
};

class Platypus final : public Oviparous, public Mammal {};

Platypus platty;
platty.Oviparous::nurse ();
platty.Mammal::nurse ();

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Diamond Inheritance

Exemple
Animal

-weight : unsigned
+weight () : unsigned

Oviparous Mammal

Platypus

Transport
-speed : unsigned

+speed () : unsigned

Boat Plane

Seaplane

I How many copies of the base class do we want?
I Why reason at the class level?
⚠️

Each language has its own position…

OAP / Aggregation, Composition, Inheritance 34/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Diamond Inheritance

Exemple
Animal

-weight : unsigned
+weight () : unsigned

Oviparous Mammal

Platypus

Transport
-speed : unsigned

+speed () : unsigned

Boat Plane

Seaplane

I How many copies of the base class do we want?
I Why reason at the class level?
⚠️

Each language has its own position…

OAP / Aggregation, Composition, Inheritance 35/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

“Shared” inheritance
class Animal
{
public:
Animal (unsigned weight) : weight_ (weight) {};

private:
unsigned weight_;

};

class Oviparous : public virtual Animal {};
class Mammal : public virtual Animal {};

class Platypus final : public Oviparous, public Mammal
{
public:
Platypus (unsigned weight) : Animal (weight) {};

};

https://creativecommons.org/licenses/by-nc-nd/4.0/


Relations Characteristics Problems

Diamond Inheritance

Exemple
Animal

-weight : unsigned
+weight () : unsigned

Oviparous Mammal

Platypus

Transport
-speed : unsigned

+speed () : unsigned

Boat Plane

Seaplane

I How many copies of the base class do we want?
I Why reason at the class level?
⚠️

Each language has its own position…

OAP / Aggregation, Composition, Inheritance 35/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

“Repeated” inheritance
class Transport
{
public:
Transport (unsigned speed) : speed_ (speed) {};

private:
unsigned speed_;

};
class Boat : public Transport
{
public:
Boat (unsigned speed) : Transport (speed) {};

};
class Plane : public Transport
{
public:
Plane (unsigned speed) : Transport (speed) {};

};
class Seaplane : public Boat, public Plane
{
public:
Seaplane (unsigned boat_speed, unsigned plane_speed)
: Boat (boat_speed), Plane (plane_speed)

{};
};

https://creativecommons.org/licenses/by-nc-nd/4.0/


Bibliography

Plan

Bibliography

OAP / Aggregation, Composition, Inheritance 36/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

https://creativecommons.org/licenses/by-nc-nd/4.0/


Bibliography

Bibliography

Barbara Liskov.
Data Abstraction and Hierarchy.
OOPSLA’87 Keynote, 1988.

OAP / Aggregation, Composition, Inheritance 37/37

Copyright © 2024 Didier Verna, CC BY-NC-ND 4.0 Build 2024-11-03 12:30:26+01:00

http://www.sr.ifes.edu.br/~mcosta/disciplinas/20091/tpa/recursos/p17-liskov.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Relations between Classes
	Aggregation
	Composition
	Inheritance

	Characteristics of Inheritance
	Class Hierarchies
	Instantiation Policies
	Accessibility

	Inheritance Problems
	Inheritance and Instantiation
	Ambivalence of Inheritance
	Multiple Inheritance

	Appendix
	Bibliography


