The Clon User Manual

The Command-Line Options Nuker, Version 1.0 beta 27 "Michael Brecker"

Didier Verna <didier@didierverna.net>

mailto:didier@didierverna.net

Copyright (©) 2010-2012, 2015, 2017, 2020-2025 Didier Verna

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided also that the section entitled “Copy-
ing” is included exactly as in the original.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be translated as well.

Cover art by Alexis Angelidis.

Table of Contents

70)48 4 7= 1
1 Introduction............. 3
2 Installation........ 5
3 Quick Start. 7
3.1 Full SOUTCE . ..ot 7
3.2 EXplanation e 7

4 Using Clon............. 11
4.1 Synopsis Definition 11
4.1.1 Synopsis Tbemis. . ..ot 11
I P 1 P 11

4112 OPHIONIS . - vttt 12

41103 GIOUDS « e ettt et e et e e e e 12

4.1.2 Built-In Option Types e 12
4.1.2.1 Common Properties.ooiiiiiii 12

401,202 Flags et 13

4.1.2.3 Common Valued Option Properties........... ..., 13

4.1.2.4 Built-In Valued Options...... ... 13

4.1.3 Advanced Synopsis Creationot 14
4.1.3.1 COnSEIUCEOTS . . vttt ettt ettt e e e e e et e et e e e 14

4.1.3.2 Advantagesottt 15

4.1.3.3 Group Definition. 16

4.2 Context Creationt e 16
4.2.1 Making A CONtextottt 16

4.2.2 Contextual Information.......... .. i 16
4.2.2.1 Program Name. ... 16

4.2.2.2 Command-Line Remainder........... ... i 16

4.2.2.3 Command-Line Polling...... 17

4.3 Integrity Checkso 17
4.4 Option Retrieval. e 17
4.4.1 Explicit Retrieval 18

4.4.2 Sequential Retrieval. 18

4D Help . o 19

5 Extending Clon.......... 21
5.1 New Option Types. ..o e e 21
5.1.1 New Option Classes.ttt ettt e e et e e 21

5.1.2 Value Check Protocol e 22

5.1.3 Argument Conversion Protocol....... i 23

5.1.4 Error Management.t e 24

5.1.5 Value Stringification Protocol o i 24

5.1.6 Constructor Functions 25

5.2 ExXtension Tips ... ooo i e 26

ii

5.2.1 Incremental Option TypPesttt e 26

5.2.2 Lisp Option ADUSe. ...ttt e 27

6 Advanced Usage................. i, 29
6.1 Multiple Clon INStanCes.ttt e 29
6.1.1 Using Different Synopsist e e 29

6.1.2 Using Different Command-Lines.o, 29

6.1.3 Using Multiple Contexts e e 29

6.1.4 Potential Uses 30

6.2 Programmatic Help Strings e 30

7 Application Delivery 33
7.1 Dumping Executables. 33
7.1.1 Dumping Methods 33

7.1.2 Method Compatibilityo 34

7.2 DElIVEring SCIIPES . . vttt et ettt e et e e e e e e e 35
7.2.1 Scripts Command-Line. 35

7.2.2 Scripts Program Name. 36

7.3 Distributing Clon Material. i e 37

8 Other Considerations 39
8.1 Configuration. e 39
8.2 Non-ANSI Featuresttt e e 39
8.3 Version NUmberingo i 40

9 Conclusion 41
Appendix A Supported Platforms 43
A.1 CLISP, Allegro and LispWorks specificities 43
A2 ABCL SPeCifiCIties . ..o ottt 43
Appendix B API Quick Reference.......................... ... 45
Bl SebuD . oot 45
BL2 UtItIeS . o ettt ettt e 45
B.3 Initialization Phase APIL. 45
B.4 Runtime Phase APL. 46
B.5 Extension AP 47
B.6 Versioning API. 47
Appendix C Indexescciiiiiiiiiiiiiiiiiiiii .. 49
L B 070 0Tl o = P 49
C.2 FUNCIONS . ..ot 52
C.3 Variables. . ..o 54
Cid Data Ty POS o oottt ettt e e e e 55

Appendix D Acknowledgments.......................... 57

Copying

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS
ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS AC-
TION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PER-
FORMANCE OF THIS SOFTWARE.

1 Introduction

Clon is a library for managing command-line options in standalone Common Lisp applications.
It provides a unified option syntax with both short and long names, automatic completion
of partial names and automatic retrieval/conversion of option arguments from the command-
line, associated environment variables, fallback or default values. Clon comes with a set of
extensible option types (switches, paths, strings etc.). Clon also provides automatic generation
and formatting of help strings, with support for highlighting on tty’s through ISO/IEC 6429
SGR. This formatting is customizable through themes.

Depending on the target audience, Clon stands for either “The Command-Line Options
Nuker” or “The Common Lisp Options Nuker”. Clon also has a recursive acronym: “Clon
Likes Options Nuking”, and a reverse one: “Never Omit to Link with Clon”. Other possible
expansions of the acronym are still being investigated.

This manual is for the Clon wuser, that is, the developer of a Common Lisp application who
wants to use Clon for command-line option management!. As opposed to the user of the library,
the user of an application powered by Clon is called an end-user. Clon provides both a user
manual (this one) and an end-user manual (see The Clon End-User Manual). Everybody should
read the end-user manual first.

Chapter 3 [Quick Start], page 7, provides a very short example in order to give an overview
of what’s coming next. Chapter 4 [Using Clon], page 11, explains in detail how to clonify your
application, and Chapter 5 [Extending Clon], page 21, describe how to extend Clon with your
own option types.

L An application using Clon for its command-line option management is said to be clonified. It is also possible
to say clonfiscated. However, we advise against using clonistified. The term clonificated is also considered bad
style, and the use of clonificationated is strictly prohibited.

2 Installation

First of all, see Clon’s homepage for tarballs, Git repository and online documentation. Clon is
an ASDF 3 library. If you download a Clon tarball, or clone the repository, you need to unpack
somewhere in the ASDF source registry. Otherwise, Clon is also available via Quicklisp. See
Appendix A [Supported Platforms], page 43, for more information on portability and dependen-
cies.

Clon’s main system is called ‘net.didierverna.clon’. Depending on your installation, you
may thus either asdf:load-system, or ql:quickload it in your Lisp image. If you encounter
grovel or ffi related problems, you may need to set the ‘CC’ environment variable to a working
compiler before loading.

Alternatively, if you just want to use the core library without all the platform-dependent
bells and whistles (see Section 8.2 [Non-ANSI Features|, page 39), you may also just load the
‘net.didierverna.clon.core’ system.

In addition to the library itself, the Clon distribution offers documentation in the form of
3 different manuals, some data files like sample themes (see Section “Theme Creation” in The
Clon End-User Manual), and a couple of demonstration programs. If you want to benefit from
all these wonders, some bits of manual installation are needed. After unpacking, please perform
the following steps, in order.

1. Edit make/config.make to your specific needs.

2. Type make to compile the documentation (end-user manual, user manual and reference
manual). By default, the documentation is built in Info, PDF, and HTML formats. If you
want other formats (DVI and PostScript are available), type make all-formats. You can
also type individually make dvi and/or make ps in order to get the corresponding format.

3. Type make install to install both the documentation and the data files. If you have
compiled the documentation in DVI and PostScript format, those will be installed as well.

The reference manual’s Texinfo source is included in the distribution (and in the repository),
although it is generated automatically by Declt. Before compiling, it is possible to regenerate
a local version of it with hyperlinks to your installation by typing make localref. For this to
work, you need SBCL and Declt though. If you ever need to regenerate the regular version, you
can also type make generate.

Type make uninstall to uninstall the library.

Finally, if you want to play with the demo programs, cd to the demo/ directory, and type
either make asdf-dump or make clon-dump. These are two different methods for producing
standalone executables, via ASDF or via Clon itself. See Section 7.1 [Dumping Executables],
page 33, for more information. make install does not do anything with the demo programs.

http://www.lrde.epita.fr/~didier/software/lisp/clon.php
http://www.quicklisp.org
https://www.lrde.epita.fr/~didier/software/lisp/typesetting.php#declt

3 Quick Start

In this chapter, we assume that Clon is available, along with all its dependencies (see Chapter 2
[Installation|, page 5), and we build a very short program to get you started. Let’s call it
quickstart.lisp.

3.1 Full Source

For cut’n paste convenience, the complete source code is given below. For a slightly longer
example, have a look at the demonstration program called simple in the distribution.

p
(in-package :cl-user)

;; This is the ASDF way, but use Quicklisp's qgl:quickload if you prefer.
(require "asdf")

(asdf:load-system :net.didierverna.clon)

(use-package :net.didierverna.clon)

(defsynopsis (:postfix "FILES...")
(text :contents "A very short program.")
(group (:header "Immediate exit options:")
(flag :short-name "h" :long-name "help"
:description "Print this help and exit.")
(flag :short-name "v" :long-name "version"
:description "Print version number and exit.")))

(defun main ()
"Entry point for our standalone application."
(make-context)
(when (getopt :short-name "h")
(help)
(uiop:quit))
(do-cmdline-options (option name value source)
(print (list option name value source)))
(terpri)
(uiop:quit))

(dump "quickstart" main)
N

3.2 Explanation
Let’s examine this program step-by-step now.
First, we put ourselves in the Common Lisp user package, and load Clon’s main ASDF

system, called ‘net.didierverna.clon’. Next, we use the Clon package, also named
‘net.didierverna.clon’.

8 The Clon User Manual

s ~
(in-package :cl-user)

;3 This is the ASDF way, but use Quicklisp's gl:quickload if you prefer.
(require "asdf")
(asdf:load-system :net.didierverna.clon)

(use-package :net.didierverna.clon)
-

In fact, using the Clon package directly is done here for simplicity, but is not recommended.
In case you find the package name too long to prefix every symbol with, Clon provides a util-
ity function that allows you to add (and use) a shorter nickname instead (the demonstration
programs in the distribution show how to use it):

nickname-package &optional NICKNAME [Function]
Add NICKNAME (:clon by default) to the :NET.DIDIERVERNA.CLON package.

The next thing you want to do is to create a set of options, groups or texts that your
application will recognize and/or display in its help string. The structure of your command-line
is known to Clon as the synopsis. In order to create it, use the macro defsynopsis.

-
(defsynopsis (:postfix "FILES...")
(text :contents "A very short program.")
(group (:header "Immediate exit options:")
(flag :short-name "h" :long-name "help"
:description "Print this help and exit.")
(flag :short-name "v" :long-name "version"

:description "Print version number and exit.")))
(S J

Note that the synopsis has a double role: it not only serves to define the options recognized
by your application, but also the order in which every element appears in the help string. In
that particular example, we define a line of text and a group with a header and two flags.

Now, we are going to define a function main for our standalone application. The first thing
that we need to do is create a context. A context is an object that Clon uses to store various
things, including some state related to the parsing of the command-line. You create a context
with the function make-context.

(defun main ()
"Entry point for our standalone application."
(make-context)

At that point, Clon is ready to retrieve the options you want from the command-line. Let’s
first see if the user has called the option -h, and give him the help string. Option retrieval
is done with the function getopt, and automatic help string output with the function help.
Note that what we do here is not process the command-line in sequence, but look directly for a
specific option by name (this retrieval method is said to be explicit).

(when (getopt :short-name "h")
(help)
(uiop:quit))

Chapter 3: Quick Start 9

UIOP’s quit function is a portable wrapper around an implementation-dependent way of
saying goodbye. It takes an exit status code as optional argument.

And now, we are going to retrieve the other options and simply print them. This time how-
ever, we process the command-line sequentially (so this retrieval method is said to be sequential).
This is done with the do-cmdline-options macro. We also close the main function.

(do-cmdline-options (option name value source)
(print (list option name value source)))

(terpri)

(uiop:quit))

Finally, time to save the Lisp image.

[(dump "quickstart" main) m

The first argument to dump is the name of the executable to produce, and the second argument
is the name of the function to call automatically at startup. In fact, dump also accepts a &rest
argument that just be passed on to the underlying (implementation-specific) dumping facility.

In order to get a standalone executable from this program, all you need to do now is to
type ‘sbcl --script quickstart.lisp’. Note that the actual way of dumping executables
is compiler-dependent. For more information on the proper way to do it and on the compilers
currently supported, see Section 7.1 [Dumping Executables], page 33. Note also that it is possible
to use Clon without actually dumping a standalone executable (see Section 7.2 [Delivering
Scripts], page 35) at all.

11

4 Using Clon

Using Clon in your application is a two stages process. In phase 1, you create a synopsis, which
is a description of your application’s command-line and a context, which describes this specific
execution of the program. In phase 2, you retrieve the option values and possibly display help
strings. Phase 1 is called the initialization phase, while phase 2 is called the runtime phase.

4.1 Synopsis Definition

Step one of the Clon initialization phase consists in defining a synopsis. A synopsis is essentially
a description of your application’s command-line: it describes what are the available options,
whether your application has a postfix etc. The synopsis, however, plays a second role: it
also describes the contents of your application’s help string. When you create a synopsis, you
describe the command-line and the help string at the same time.

4.1.1 Synopsis Items
Look again at the synopsis definition provided in Chapter 3 [Quick Start], page 7.

s ™
(defsynopsis (:postfix "FILES...")
(text :contents "A very short program.")
(group (:header "Immediate exit options:")
(flag :short-name "h" :long-name "help"
:description "Print this help and exit.")
(flag :short-name "v" :long-name "version"
:description "Print version number and exit.")))

You define a synopsis with the defsynopsis macro.

defsynopsis ([OPTIONS...]) ITEMS. .. [Macro]
Define a new synopsis and return it. OPTIONS are key/value pairs. ITEMS are text, group
or option descriptions.

The following OPTIONS are currently available.

:postfix A string which will appear at the end of the synopsis line in the help string.
When you provide a postfix, you also implicitely tell Clon that your application
accepts non-option arguments at the end of the command-line (this is called the
remainder of the command-line). See Section “Option Separator” in The Clon
End-User Manual for more information on the behavior of Clon with respect to
postfixes. Also, see Section 4.2.2.2 [Command-Line Remainder], page 16, on how
to access the command-line remainder.

We now examine the syntax for each possible ITEM.

4.1.1.1 Text
In order to add arbitrary text to your help string, use the following form:
(text [OPTIONS. . .])
OPTIONS are key/value pairs. The following OPTIONS are currently available.
:contents
The actual text string. Try to make proper sentences when adding arbitrary text.

You can use explicit newline characters in your text if you really want to go next
line, but in general, you should not worry about the formatting because the themes

12 The Clon User Manual

are here to do so. In particular, don’t finish your text with a newline. This would
break potential theme specifications.

:hidden When non-nil, the text won’t appear in the help string. Hidden texts can still be
displayed individually though (see Section 4.5 [Help|, page 19).

4.1.1.2 Options

In order to add an option to your help string, you must provide a list beginning with the option
type and followed by key/value pairs describing the option’s properties. For instance, to add a
flag with a short name and a description, you could do this:
(flag :short-name "h" :description "Print this help and exit.")

Option properties vary depending on the option type. The exact list of available option
types, and the corresponding properties are described in Section 4.1.2 [Built-In Option Types],
page 12.

4.1.1.3 Groups
In order to add a group to your help string, use the following form:
(group ([OPTIONS. ..]) ITEMS. . .)
OPTIONS are key/value pairs. ITEMS simply are arbitrary text, option or sub-group de-
scriptions as we'’ve just seen.
The following OPTIONS are currently available.

:header A string which will be displayed above the group’s contents in the help string. The
same formatting recommendations as for arbitrary text apply (see Section 4.1.1.1
[Text], page 11).

:hidden When non-nil, the group won’t appear in the help string. Hidden groups can still
be displayed individually though (see Section 4.5 [Help], page 19). For instance, the
Clon built-in group is hidden in the regular help string, but the -—clon-help option
still displays it individually.

4.1.2 Built-In Option Types

In this section, we will review all the built-in option types that Clon provides, along with their
corresponding properties. You can use them directly in your synopsis description. For adding
personal option types to Clon, see Section 5.1 [New Option Types], page 21.

4.1.2.1 Common Properties

All option types in Clon, including those you define yourself (see Section 5.1 [New Option Types],
page 21), have a set of basic, common properties. Here is a list of them.

:short-name
The option’s short name. A string or nil.
:long-name
The option’s long name. A string or nil.
:description
The option’s descriptive text. A string or nil. The same formatting recommenda-
tions as for arbitrary text apply (see Section 4.1.1.1 [Text], page 11).

:env-var The option’s associated environment variable. A string or nil.

:hidden When non-nil, the option won’t appear in the help string. Hidden options can still
be displayed individually though (see Section 4.5 [Help], page 19).

Chapter 4: Using Clon 13

Note that an option is required to have at least one name (either short or long). Non-nil
but empty names are also prohibited, and of course, a short name cannot begin with a dash
(otherwise, it would be mistaken for a long name, but did I really need to mention this?).

4.1.2.2 Flags

In Clon, options that don’t take any argument are of type flag. These options don’t provide
additional properties on top of the common set described in Section 4.1.2.1 [Common Properties],
page 12. All properties default to nil.

4.1.2.3 Common Valued Option Properties

All non-flag options in Clon are said to be valued. All valued options, including those you define
yourself (see Section 5.1 [New Option Types], page 21), share a set of additional properties.
Here is a list of them.

rargument-name
The name of the option’s argument, as it appears in the help string. It defaults to
"ARG", so that for instance, a ‘name’ option would appear like this: ‘~-name=ARG’.

:argument-type
The status of the argument. Possible values are :required (the default) and
:mandatory which are synonyms, or :optional.

:fallback-value

:default-value
The option’s fallback and default values. Remember that a fallback value only makes
sense when the argument is optional. Besides, also when the argument is optional,
you need to provide at least a fallback or a default value (or both of course; see
Section “Value Sources” in The Clon End-User Manual).

4.1.2.4 Built-In Valued Options

Clon currently defines 6 built-in valued option types. These option types may change the default
value for some common properties, and / or provide additional properties of their own. All of
this is described below.

stropt This option type is for options taking strings as their argument. String options don’t
provide any additional properties, but their default argument name is changed from
"ARG" to "STR".

lispobj This option type is for options taking any kind of Lisp object as their argument.
lispobj options change their default argument name from "ARG" to "0OBJ". Also,
they provide an additional property called :typespec which must be a Common
Lisp type specifier that the argument must satisfy. It defaults to t. Look at the
--clon-line-width built-in option for an example.

enum This option type is for options taking values from an enumerated set of keywords.
enum options change their default argument name from "ARG" to "TYPE". Also,
they provide an additional property called :enum to store the list of Common Lisp
keywords enumerating the possible values. The end-user does not use a colon when
providing an argument to an enum option. Only the keyword’s name. The end-
user also has the ability to abbreviate the possible values. An empty argument is
considered as an abbreviation for the first element in the set. Look at the -—clon-
version built-in option for an example.

path This option type is for options taking a colon-separated list of pathnames as ar-
gument. path options change their default argument name from "ARG" to "PATH".

14 The Clon User Manual

Also, they provide an additional property called :type which specifies the kind
of path which is expected. Possible values are: :file, :directory, :file-list,
:directory-list or nil (meaning that anything is allowed). Null paths are al-
lowed, and may be provided by an empty argument. Look at the ——clon-search-
path and --clon-theme built-in options for examples.

switch This option type is for Boolean options. switch options change their default
argument type from required to optional and provide a fallback value of t au-
tomatically for optional arguments. switch options provide a new property
called :argument-style. Possible values are :yes/no (the default), :on/off,
:true/false, :yup/nope, :yeah/nah. This property affects the way the argument
name and true or false values are advertized in help strings. However, all possible
arguments forms (see Section “Switches” in The Clon End-User Manual) are always
available to all switches.

xswitch This option type stands for extended switch. Extended switches result from the
mating of a male switch and a female enumeration, or the other way around (ele-
mentary decency prevents me from describing this mating process in detail): their
possible values are either Boolean or from an :enum property as in the case of enum
options. As simple switches, xswitch options change their default argument type
from required to optional and provide a fallback value of t automatically for optional
arguments. They also provide the :argument-style property. Contrary to switches,
however, this property does not affect the argument name. It only affects the way
true or false values are displayed in help strings. Look at the ——-clon-highlight
built-in option for an example.

4.1.3 Advanced Synopsis Creation

The fact that defsynopsis lets you define things in a declarative way has not escaped you.
Declarative is nice but sometimes it gets in the way, so it is time to see how things work under
the hood. Every item in a synopsis is in fact implemented as an object (an instance of some class),
so it turns out that defsynopsis simply is a convenience wrapper around the corresponding
constructor functions for all such objects. Instead of using defsynopsis, you can then use those
constructor functions explicitely.

4.1.3.1 Constructors

Let’s have a look at the expansion of defsynopsis from the quick start example (see Chapter 3
[Quick Start], page 7).

The original code is like this:

s ~
(defsynopsis (:postfix "FILES...")
(text :contents "A very short program.")
(group (:header "Immediate exit options:")
(flag :short-name "h" :long-name "help"
:description "Print this help and exit.")
(flag :short-name "v" :long-name "version"
:description "Print version number and exit.")))

And once the macro is expanded, it will look like this:

Chapter 4: Using Clon 15

e ™
(make-synopsis :postfix "FILES..."
:item (make-text :contents "A very short program.")
:item (make-group :header "Immediate exit options:"
:item (make-flag :short-name "h"
:long-name "help"
:description "Print this help and exit.")
:item (make-flag :short-name "v"
:long-name "version"

:description "Print version number and exit.")))
- /

As you can see, every synopsis element has a corresponding make-SOMETHING constructor,
and the keywords used here and there in defsynopsis are in fact initargs to those constructors.
We now examine those constructors in greater detail.

make-text [:hidden BOOL] :contents STRING [Function]
Create an arbitrary text object, possibly hidden, whose contents is STRING.
make-OPTION :INITARG INITVAL. .. [Function]

Create a new OPTION object, OPTION being any built-in option type (flag, stropt etc.,
see Section 4.1.2.4 [Built-In Valued Options|, page 13) or user-defined one (see Section 5.1
[New Option Types|, page 21). For a list of available initialization arguments (depending on
the option type), see Section 4.1.2 [Built-In Option Types|, page 12.

make-group [:header STRING :hidden BOOL] :item ITEMI :item [Function]
ITEM?2. ..
Create a group object, possibly hidden, whose header is STRING. Every ITEM is an arbi-
trary text object, option object or group object. The order is important as it determines the
display of the help string.

make-synopsis [:postfix STRING] :item ITEMI :item ITEM2. .. [Function]
Create a synopsis object whose postfix is STRING. Every ITEM is an arbitrary text object,
option object or group object. The order is important as it determines the display of the
help string.

In fact, the defsynopsis macro allows you to freely mix declarative forms, constructor calls
or whatever Lisp code you may want to use. The way this works is as follows: if a synopsis
ITEM (see Section 4.1.1 [Synopsis Items], page 11) is a list whose car is text, group, or any
option type (inluding those you define yourselves; see Section 5.1 [New Option Types], page 21),
then the ITEM is expanded as explained earlier. Otherwise, it is just left as-is.

To sum up, here’s a example of things you can do in defsynopsis.

(net.didierverna.clon:defsynopsis ()
(flag #| ... |#)
my-great-option
(setq *another-option* (net.didierverna.clon:make-switch #| ... [#)))

4.1.3.2 Advantages

So, why would you want to use constructors directly or mix declarative and imperative forms
in defsynopsis? There are several reasons for doing so.

1. Some people prefer to declare (or should I say, create) their arbitrary texts, options and

groups locally, in files, modules or ASDF components where they belong. In such a case,

16 The Clon User Manual

you need to keep references to the corresponding objects in order to compute the synopsis
in the end.

2. Since using constructors explicitly allows you to keep references to the created objects, these
objects can be reused. For instance, you can use the same text at different places, you can
also use a single option several times, or even a single group several times so that its items
appear in different places etc. Note that Clon knows its way around multiple occurrences
of the same object: even if you use the same option object several times in a synopsis, Clon
only maintains a single option definition.

4.1.3.3 Group Definition

There is one last point we need to address in order to complete this section. There might be
times when you need to manipulate an explicit group object, but the object itself can still be
created in a declarative (or mixed) way because you don’t need to keep references on its items.
For this, Clon provides a macro called defgroup.

defgroup (OPTIONS. . .) ITEMS. .. [Macro]
Define a new group and return it. This macro behaves exactly like the group form in a call
to defsynopsis (see Section 4.1.1.3 [Groups|, page 12). In fact, an intermediate step in the
expansion of the defsynopsis macro is to transform group forms into defgroup macro calls.

As for defsynopsis, defgroup allows you to mix declarative forms, constructor calls or any
kind of Lisp code.

4.2 Context Creation

Step two of the Clon initialization phase consists in creating a context. A context is an object
representing a particular instance of your program, for example (and most notably) with an
actual command-line as the user typed it.

4.2.1 Making A Context

You create a context with the make-context function. The possible options to this function
will be described later on, when appropriate.

make-context OPTIONS. .. [Function]
Create a new context. That’s it.

4.2.2 Contextual Information

Once a context object is created, you have access to some interesting contextual information.

4.2.2.1 Program Name

The application’s program name, as it appears on the command-line, may be accessed from
Clon. You may find it easier to do this way, as Clon wraps around implementation-dependent
access methods to argv[0].

In order to retrieve argv[0], use the progname function like this: (progname). In fact, it is
possible to modify Clon’s notion of the program name, for example in cases where argv[0] is
not very informative (see Section 7.2 [Delivering Scripts], page 35).

4.2.2.2 Command-Line Remainder

In the case your command-line has a remainder (that is, a non-options part; see Section “Option
Separator” in The Clon End-User Manual and Section 4.1.1 [Synopsis Items|, page 11), you
may need to access it in order to process it independently from Clon. Since Clon is responsible
for parsing the command-line, it is also in charge of figuring out where the remainder of the
command-line begins.

Chapter 4: Using Clon 17

The command-line remainder is known to Clon as soon as a context is created. You can
retrieve it by using the remainder function like this: (remainder). The remainder is provided
as a list of strings.

4.2.2.3 Command-Line Polling

Clon provides two utility functions to inquire on the current status of the command-line.

The function cmdline-options-p returns true if there are still unprocessed options on the
command-line. The function cmdline-p returns true if there’s anything left on the command-
line, that is, either unprocessed options, or a remainder. A potential use of cmdline-p at
a very early stage of your application could be to automatically display a help string if the
command-line is effectively empty.

4.3 Integrity Checks

At this point, you know about the two necessary steps to initialize Clon: defining a synopsis and
creating a context. If you paid attention to the quick start application (see Chapter 3 [Quick
Start], page 7), you may have noticed that defsynopsis was called as a top-level form whereas
make-context was called from the function main. So why the difference?

First, I hope that you see why a context cannot be created as a toplevel form. If you do that,
you will end-up creating a context relevant to the Lisp environment from which the application
is created, not run.

The synopsis, on the other hand, could be defined either as a toplevel form, as done in the
quick start and the demo programs, or in the function main, just before making a context. There
is a very good reason to prefer a toplevel form however: that reason is called “integrity checks”.

When you define a synopsis (or any synopsis item, for that matter), Clon performs a number
of checks to make sure that you're making a sensible use of the library. In fact, the number of
semantic mistakes that you can make is quite puzzling. You could for instance define several
options with identical names, forget to provide a fallback or default value when it is required,
provide invalid fallback or default values, and the list goes on and on. These are just a few
examples but there are many more, and Clon checks all of those (I think).

Since those mistakes relate to the definition of the application itself, they do not depend on
a particular execution of it. Consequently, the sooner Clon catches them, the better. If you
define your application’s synopsis as a toplevel form, Clon will be able to perform its integrity
checks when the application is created, not only when it is used. In other words, you won’t be
able to get a working application until your use of Clon is semantically correct.

This is why it is strongly recommended to create synopsis from toplevel forms, and this also
explains why Clon chooses not to provide an initialize function that would wrap around
defsynopsis and make-context together.

4.4 Option Retrieval

During the runtime phase of Clon, your main activity will be to retrieve options and their
values. Clon provides two techniques for retrieving options: you can request the value for a
specific option directly, or you can process the command-line sequentially, which is the more
traditional approach.

Both of these techniques can be freely combined together at any time, because Clon keeps
track of the current status of the command-line. In fact, Clon never works on the original
command-line, but uses a mutable copy of it after parsing. If you want to access the real
command-line of your application (except for the compiler-specific options, see Section 7.2 [De-
livering Scripts|, page 35), you may use the cmdline function, which is a wrapper around an
implementation-dependent way to access it.

18 The Clon User Manual

Finally, remember that the command-line is scanned from left to right during option retrieval
(see Section “Option Retrieval” in The Clon End-User Manual).

4.4.1 Explicit Retrieval

Since Clon lets you retrieve options on demand (at any time), it makes sense to be able to request
the value of a specific option explicitely. For instance, you might want to try the ‘~-help’ option
first, without looking at the rest of the command-line because the application will in fact quit
immediately after having displayed the help string.

getopt :KEY VALUE. .. [Function]

Retrieve the value of a specific option. The following :KEY's are currently available.

:short-name
:long-name
Use one of these 2 keys to specify the name of the option you wish to retrieve.

:option Alternatively, you can use a reference to an option object (see Section 4.1.3.1
[Constructors], page 14).

This function return two values: the option’s value and the value’s source (see Section “Value
Sources” in The Clon End-User Manual).

The value’s source may have the following forms:

(:cmdline NAME)
This is for options found on the command-line. NAME is the name used on the
command-line. It can be the option’s long or short name, or a completed long name
if the option’s name was abbreviated. A completed name displays the omitted parts
in parentheses ("he(1p)" for instance).

(:fallback NAME)
The same but when the fallback value is used, that is, when an option is not provided
with its (optional) argument.

(:default NAME)
The same, but when the default value is used (because there is no fallback).

(:environment VAR)
This is for options not found on the command-line but for which there is an asso-
ciated environment variable set in the application’s environment. VAR is the name
of the corresponding environment variable.

:default This is for options not found anywhere, but for which a default value was provided.

Note that because flags don’t take any argument, getopt returns a virtual value of t when
they are found or a corresponding environment variable exists in the environment. For the same
reason, a flag’s value source may ony be (:cmdline NAME) or (:environment VAR).

When an option is not found anywhere and there is no default value, getopt just returns nil
(no second value). Also, note that when your option accepts nil as a value, you need to handle
the second retrun value to make the difference between an option not found, and an actual value
of nil.

4.4.2 Sequential Retrieval

The more traditional approach to option retrieval is to scan the command-line for options in
their order of appearance. Clon supports this by providing you with one function and two
macros, as explained below.

Chapter 4: Using Clon 19

getopt-cmdline [Function]
Get the next command-line option, that is, the first option on the command-line that has
not been previously retrieved, either explicitely or sequentially.

When there are no more options on the command-line, this function returns nil. Otherwise,
four values are returned: the corresponding option object from the synopsis definition (see
Section 4.1.3.1 [Constructors], page 14), the name used on the command-line, the option’s
value and the value source (:cmdline, :fallback or :default). As in the case of explicit
retrieval (see Section 4.4.1 [Explicit Retrieval], page 18), the option’s name may be completed
in case of abbreviation.

Unless you keep references to all your option objects (and thus can compare them directly
to the one returned by this function), you can still identify the retrieved option by using the
short-name and long-name readers on it: simply use (long-name OPTION) or (short-name
OPTION) and you will get the corresponding strings.

multiple-value-getopt-cmdline (OPTION NAME VALUE SOURCE) [Macro]
BODY
Evaluate BODY with OPTION, NAME, VALUE and SOURCE bound to the values returned
by the getopt-cmdline function above. Note that BODY is not evaluated if there was no
remaining option on the command-line, so you don’t need to conditionalize on OPTION
being null yourself.

do-cmdline-options (OPTION NAME VALUE SOURCE) BODY [Macro]

As above, but loop over all command-line options.

4.5 Help

One of the first motivations in the design of Clon was to automate the generation of the help
string, which is a very boring maintenance task to do by hand. The application’s synopsis
contains all the necessary information to do so. In order to print your application’s help string,
use the help function.

help [:item ITEM] [Function]
Print the application’s help string. Printing honors the search path, theme, line width and
highlight settings provided by the corresponding built-in options (see Section “Theme Mech-
anism” in The Clon End-User Manual).

By default, help prints the whole application help string, excluding hidden items. However,
if you have kept a reference to any synopsis item (option, text, group), you can pass it as the
value of the :item key, and Clon will only print the help string for that particular item. In this
case however, it will be displayed even if was declared as hidden (this exception does not extend
to its sub-items, though, and they will not be displayed if themselves declared hidden).

For instance, the Clon built-in group is normally hidden, so it doesn’t show up in the global
help string, but the —-clon-help option uses the help function on it explicitely, so it discards
its hidden state.

Here is a potentially useful application of hidden groups in conjunction with the :item
key. Look at ImageMagick’s convert program’s help string for instance: it is 276 lines long.
Gosh. The help string is decomposed into several categories: image settings, image operators,
misc options etc.. If I were to implement this program, I would rather have the --help op-
tion display an overview of the program, advertise -—-version and a couple of others, and I
would then implement —--help as an enumeration for listing every option category individually
(they would normally be stored in hidden groups). The user could then use -—help=settings,
--help=operators and so on to display only the category she’s interested in.

20 The Clon User Manual

Finally, here is potentially useful application of hidden options that are never ever displayed
in any help string whatsoever, and I mean, like, ever. This is the perfect tool for backdoor’ing a
program. For instance, if you ever need to implement a --discard-all-security-measures-
and-blow-the-nuke option, then you’d better have it hidden. . .

21

5 Extending Clon

As you know, Clon already provides seven built-in option types: flags and six other types for
valued options (see Section 4.1.2.4 [Built-In Valued Options|, page 13). After using Clon for
a while, you may find that however brilliant and perfectly designed it is, none of the provided
built-in types fullfill your requirements exactly. There are two ways around this: the right way
and the wrong way (hint).

The wrong, although perhaps quicker way would be to use the stropt option type to simply
retrieve unprocessed string values, and then do whatever tweaking required on them. In doing
so, you risk reinventing some of Clon’s wheels.

The right way is to define a new option type. Properly defined option types are a good thing
because they allow for reusability and also extensibility, since new option types can always be
defined on top of others. In this chapter we explain how to extend Clon by providing new
option types. We illustrate the process with the example of the built-in enum one.

Oh, and I almost forgot. I hope it is obvious to everyone that new option types are always
valued. There’s no point in extending Clon with options that don’t take any arguments, since
we already have flags.

5.1 New Option Types

From a software engineering point of view, it is better to implement new option types in a file of
their own, preferably named after the option type itself, and to put this file in the Clon package,
like this:

[(in-package :net.didierverna.clon) m

Creating your own option type involves 5 steps: providing a class for them, implementing
three protocols related to argument/value tweaking, and providing a constructor function. We
now review those 5 steps in order.

5.1.1 New Option Classes

Clon maintains a class hierarchy for all option types. The mother of all option types is the
option abstract class. It handles the options’short and long names, description and associated
environment variable (see Section 4.1.2.1 [Common Properties], page 12). Valued options inherit
from an abstract subclass of option called valued-option. This class handles the option’s argu-
ment name and status (optional or mandatory), fallback and default values (see Section 4.1.2.3
[Common Valued Option Properties], page 13).

In order to create a new option type, use the defoption macro.
defoption CLASS SUPERCLASSES SLOTS &rest OPTIONS [Macro]
Create a new option CLASS and register it with Clon. Syntactically, thismacro behaves like

defclass. Option types created like this implicitely inherit from valued-option and in turn
option, so you don’t need to put them explicitely in the SUPERCLASSES list.

Let’s look at the enumeration example now.

e ™
(defoption enum (enum-base)
((argument-name ;; inherited from the VALUED-QOPTION class
:initform "TYPE"))
(:documentation "The ENUM class.

This class implements options whose values belong to a set of keywords."))
N J

22 The Clon User Manual

As you can see, this class inherits from enum-base, which is the class handling the : enum prop-
erty. The reason for this split is that there are currently two option types providing enumeration-
like facility: enum and xswitch, so xswitch also inherits from enum-base.

There are no new slots in this class, but the argument-name slot provided by the valued-
option class has its initform changed from "ARG" to "TYPE".

5.1.2 Value Check Protocol

Now that we have our new option class, we need to implement the so-called value check protocol.
This protocol is used to make sure that values provided for options of your new type actually
comply with the type in question. Values going through this protocol are fallback values, default
values, and values provided from a debugger restart (see Section “Error Management” in The
Clon End-User Manual). In the case of fallback and default values (which, by the way, are
provided by you, the Clon user), the check is performed only once, when the option object is
created. Values provided from a debugger restart come from the application end-user, and hence
are checked every time.

The value check protocol is implemented through a check generic function for which you
must provide a method.

check OPTION VALUE [Generic Function]
Check that VALUE is valid for OPTION. If VALUE is valid, return it. Otherwise, raise an

invalid-value error.

As you can see, you need to provide a method with the first argument specialized to your
new option type. This method must return VALUE if it is okay, and raise an invalid-value
error otherwise.

Clon maintains a hierarchy of error conditions. The invalid-value error condition is defined

like this:

s ~
(define-condition invalid-value (option-error)
((value :documentation "The invalid value."
:initarg :value
:reader value)
(comment :documentation "An additional comment about the error."
:type string
:initarg :comment
:reader comment))
(:report (lambda (error stream)
(format stream "Option “A: invalid value ~S.7Q["%~A~]"
(option error) (value error) (comment error))))

(:documentation "An invalid value error."))
=)

When the error is raised, you must fill in the value and comment slots appropriately. The
super-condition option-error provides an additional option slot that you must also fill in when
the error is raised.

Let’s look at the enumeration example now.

Chapter 5: Extending Clon 23

~ ~
(defmethod check ((enum enum) value)
"Check that VALUE is a valid ENUM."
(unless (member value (enum enum))
(error 'invalid-value
:option enum
:value value
:comment (format nil "Valid values are: ~A."
(list-to-string (enum enum)
:key #'prinl-to-string))))

value)
N

This code should be self-explanatory. We check that the value we got belongs to the enu-
meration. list-to-string is a utility function that will separate every element with comas in
the resulting string.

5.1.3 Argument Conversion Protocol

The next protocol we need to implement is the so-called argument conversion protocol. This
protocol is used to convert option arguments (that is, strings) to an actual value of the proper
type. Arguments going through this protocol come from the command-line, the value of an
environment variable or a debugger restart (see Section “Error Management” in The Clon End-
User Manual). Also, note that Clon assumes that you implement this protocol correctly, so no
value check is performed on values coming from the conversion of an argument.

The conversion protocol is implemented through a convert generic function for which you
must provide a method.

convert OPTION ARGUMENT [Generic Function]
Convert ARGUMENT to OPTION’s value. If ARGUMENT is invalid, raise an invalid-
argument error.

As you can see, you need to provide a method with the first argument specialized to your
new option type. This method must return the conversion of ARGUMENT to the appropriate
type if it is valid, and raise an invalid-argument error otherwise.

The invalid-argument error condition is defined like this:

-
(define-condition invalid-argument (option-error)
((argument :documentation "The invalid argument."
:type string
:initarg :argument
:reader argument)
(comment :documentation "An additional comment about the error."
:type string
:initarg :comment
:reader comment))
(:report (lambda (error stream)
(format stream "Option ~“A: invalid argument ~S.~@[~%~A~]"
(option error) (argument error) (comment error))))

(:documentation "An invalid argument error."))
- J

24 The Clon User Manual

When the error is raised, you must fill in the argument and comment slots appropriately.
As before, the super-condition option-error provides an additional option slot that you must
also fill in when the error is raised.

Let’s look at the enumeration example now.

e ™
(defmethod convert ((enum enum) argument)
"Convert ARGUMENT to an ENUM value."
(or (closest-match argument (enum enum) :ignore-case t :key #'symbol-name)
(error 'invalid-argument
:option enum
rargument argument
:comment (format nil "Valid arguments are: ~A.
(list-to-string (enum enum)
:key (lambda (value)
(stringify enum value)))))))

-

Since enumerations allow their arguments to be abbreviated, a utility function named
closest-match is used to find the closest match between an argument and the possible val-
ues. Otherwise, an invalid-argument error is raised. For an explanation of stringify, See
Section 5.1.5 [Value Stringification Protocol|, page 24.

5.1.4 Error Management

Let’s take a short break in our Clon extension process. We have seen that Clon may throw errors
in different situations, including invalid arguments or values. The end-user manual advertises
that the interactive error handler offers a set of “options to fix problems” (if you don’t know
what I'm talking about, please read Section “Error Management” in The Clon End-User Manual
and you will know). Well, you may have guessed that these options are simply “restarts” (of
course, we don’t use that term there, as we wouldn’t want to frighten the casual user, or would
we?).

When you ship your application, you are encouraged to disable the debugger in the stand-
alone executable because that also might scare the casual user a little bit (the end-user manual
only mentions the none error-handler to explain that people shouldn’t use it). The way error
handling is done in Common Lisp standalone executables is implementation-dependent, so please
refer to your favorite compiler’s documentation. More generally, the behavior of Common Lisp
standalone executables may depend on:

e the state of the Lisp environment when the application was dumped, which may in turn
depend on command-line options passed to the Lisp itself (see Section 7.1 [Dumping Exe-
cutables], page 33),

e the arguments passed to the dumping function (look at Clon’s dump macro to see what it
does),

e worse: both.

No, really, Common Lisp is no fun at all.

5.1.5 Value Stringification Protocol

Okay, back to implementing our new option type.

The third and last protocol we need to implement is called the value stringification protocol.
This protocol can be seen as the reverse protocol for argument conversion (see Section 5.1.3
[Argument Conversion Protocol]|, page 23): its purpose is to transform an option’s value into a
corresponding argument that the end-user could have provided in order to get that value.

Chapter 5: Extending Clon 25

The main use for this protocol is to advertise the fallback and default values correctly in help
strings: the end-user does not want to see those wvalues, but rather the argument that would
lead to them. However, you are free to use it wherever you like (see the convert method for
enum options for instance).

The value stringification protocol is implemented through a stringify generic function for
which you must provide a method.

stringify OPTION VALUE [Generic Function]
Transform OPTION’s VALUE into an argument.

I admit that this function could also have been called argumentize or even deconvertify.
As you can see, you need to provide a method with the first argument specialized to your new
option type. You can assume that VALUE is a valid value for your option, so no checking is
necessary and no error needs to be raised.

Let’s look at the enumeration example now.

(defmethod stringify ((enum enum) value)
"Transform ENUM's VALUE into an argument."
(string-downcase (symbol-name value)))

Pretty straightforward, right?

5.1.6 Constructor Functions

The last required step to complete our new option type extension is to provide a constructor
function that wraps around make-instance on the corresponding option class. I won’t insult
you by explaining how to write a constructor. Let me just give four good reasons why providing
constructors is important.

Providing a constructor for every new option type is important because:

1. it is important,
2. it is a good software engineering practice,
3. it is important,

4. and above all, it makes your new option type automatically available in calls to defsynopsis
and defgroup (see Section 4.1.1 [Synopsis Items|, page 11, and Section 4.1.3.3 [Group
Definition], page 16).

Let’s look at the enumeration example now.

26 The Clon User Manual

e ™
(defun make-enum (&rest keys
&key short-name long-name description
argument-name argument-type
enum env-var fallback-value default-value
hidden)
"Make a new enum option.
- SHORT-NAME is the option's short name (without the dash).
It defaults to nil.
- LONG-NAME is the option's long name (without the double-dash).
It defaults to nil.
- DESCRIPTION is the option's description appearing in help strings.
It defaults to nil.
- ARGUMENT-NAME is the option's argument name appearing in help strings.
- ARGUMENT-TYPE is one of :required, :mandatory or :optional (:required and
:mandatory are synonyms) .
It defaults to :optiomal.
- ENUM is the set of possible values.
- ENV-VAR is the option's associated environment variable.
It defaults to nil.
- FALLBACK-VALUE is the option's fallback value (for missing optional
arguments), if any.
- DEFAULT-VALUE is the option's default value, if any.
- When HIDDEN, the option doesn't appear in help strings."
(declare (ignore short-name long-name description
argument-name argument-type
enum env-var fallback-value default-value
hidden))

(apply #'make-instance 'enum keys))
- /

Woah, what a mouthful for a single line of code. . . Yeah, I'm a maniac and I like redundancy.
I always restate all the available keys explicitely, and everything again in the docstring so that
all the interesting information is directly available (I might change my mind as I grow older
though).

5.2 Extension Tips

So that’s it. Now you know how to extend Clon with your own option types. Here is some piece
of advice that you might find useful in the process.

5.2.1 Incremental Option Types

If one of the built-in options is almost what you need, you may be tempted to subclass it directly
instead of using defoption, and only change what’s needed, After all, it’s Lisp. Lisp is a world
of mess~D~D~D"Dfreedom.

Wrong.

defoption is not only a convenience wrapper around defclass. It also arranges for
defsynopsis and defgroup to recognize your new option type. So please, do use it systemati-
cally.

Chapter 5: Extending Clon 27

5.2.2 Lisp Option Abuse

Along with the same lines, you may find that the 1ispobj type is all you need in many situations.
Let’s take an example. Suppose you want to implement a --stars option to assign a rank to a
movie, from 0 to 5. The lazy approach is to simply create a 1ispobj option with a :typespec
(type specifier) of (integer 0 5) and you’re done.

But now, remember that the end-user of your application is probably not a Lisper (in fact,
I would hope that Clon contributes to increasing the number of standalone Common Lisp ap-
plications out there. ..). What do you think would be her reaction, if, after providing a bogus
value to the --stars option, she get the following error message:

Option 'stars': invalid argument "6".

Argument "6" must evaluate to (integer 0 5).

or worse, a "Cannot parse argument" error message because of a typo?

Not very friendly, right? In other words, you need to think in terms of what the end-user of
your application will expect. In that particular situation, you might want to subclass 1ispobj
(with defoption!) only to provide friendlier error messages.

29

6 Advanced Usage

This chapter contains information about more advanced ways of using Clon.

6.1 Multiple Clon Instances

It is possible to use different instances of Clon in parallel in a single application, by using a virtual
command-line instead of the real one, different synopsis and multiple contexts simultaneously.

6.1.1 Using Different Synopsis
Did you notice that after defining a synopsis, there is actually never any explicit reference to it
anymore? So where is the magick? In fact, there’s no magick at all involved here.

Clon has a global variable named *synopsis* which holds the current synopsis. When you
define/create a synopsis with either defsynopsis or make-synopsis, it is automatically made
the default one, unless you use the :make-default option/initarg with a value of nil, like this:

(defsynopsis (:make-default nil) ...)
or this:
(make-synopsis :make-default nil ...)

When you create a context with make-context, the default synopsis is used implicitely, but
you have two ways to avoid this.

1. At any time in your program, you may change the value of *synopsis*. All subsequent
calls to make-context will hence use this other synopsis.

2. If you prefer to use another synopsis only temporarily, you can use the :synopsis initarg
to make-context instead.

6.1.2 Using Different Command-Lines

In Section 4.2 [Context Creation|, page 16, we saw that a context object describes a particular
instance of your application, most notably depending on the actual command-line the end-user
provided. It turns out, however that the command-line doesn’t need to be the actual program’s
command-line, as the user typed it. Any list of strings can act as a command-line.

The function make-context has a :cmdline key that allows you to provide any list of strings
that will act as the command-line. Of course, the default is to use the actual program’s one.

6.1.3 Using Multiple Contexts

Did you also notice that after creating a context, there is actually never any explicit reference
to it anymore? So again, where is the magick? In fact, there’s no magick at all involved here
either.

Clon has a global variable named *context* which holds the current context. When you
create a context with make-context, it is automatically made current, unless you use the :make-
current initarg with a value of nil.

The whole runtime phase API of Clon uses a context implicitely. This involves progname,
remainder, cmdline-options-p, cmdline-p, getopt, getopt-cmdline, multiple-value-
getopt-cmdline, do-cmdline-options and help. As a consequence, it is possible to use Clon
with multiple contexts at the same time. There are in fact three ways to achieve this.

1. At any time in your program, you may change the value of *context*. All subsequent calls
to the runtime phase API will hence use this other context.

2. Clonm also provides a macro which changes the current context for you.

with-context CONTEXT &body BODY [Function]
Execute BODY with *context* bound to CONTEXT.

30 The Clon User Manual

3. If you prefer to use another context only once, you can use the :context key instead.
The whole runtime phase API of Clon understands it. For the functions getopt, getopt-
cmdline and help, it’s just another key in addition to those we’ve already seen. For the
macros multiple-value-getopt-cmdline and do-cmdline-options, the key must appear
at the end of the first (list) argument, like this:

(multiple-value-getopt-cmdline (option name value :context ctx) ...)
(do-cmdline-options (option name value :context ctx) ...)

6.1.4 Potential Uses

By combining Clon’s ability to use a virtual command-line, different synopsis and multiple
contexts, you can achieve very neat (read: totally useless) things. For instance, you could write
an application that takes an option providing command-line arguments for an external program
to be forked. Some revision control systems do that for controlling external diff programs for
instance, so no big deal. The big deal is that you can completely control the validity of the
external program’s command-line, before it is forked, from your original one.

Here is another idea, again related to revision control systems. Some of them feature a
command-line syntax like the following:

prog [global options] command [command-specific options]

You can achieve this with Clon quite easily. In fact, the demonstration program called
advanced in the distribution shows you how to do it. First, define a synopsis which only
handles the global options, and provide a postfix of "command [command-specific option]"
or something like that. This will authorize a command-line remainder which will start with the
command name.

Now, for every command in your program, define a specific synopsis with only the command-
specific options. Get the remainder of the original command-line (see Section 4.2.2.2 [Command-
Line Remainder|, page 16) and figure out which command was used. Depending on it, create
a new context with the appropriate synopsis and the original command-line’s remainder as the
new, virtual, command-line. You’re done: retrieve global options from the first context, and
command-specific ones from the second one.

What’s even cooler is that you can display the command-specific options on demand quite
easily as well (like what git does when you call it like this: git commit --help for instance):
calling the help function on the original context gives you the global options’s help string while
calling it on the command-specific one will display the command-specific usage.

One thing to remember here is that every context/synopsis duet you create gets its own
set of built-in Clon options. As a consequence, there is currently no simple way to have a
single set of built-in options apply to the whole application, for instance, to both a global and
a command-specific context. Let me make this clearer: if your end-user calls prog --clon-
theme=foo command -h, then the theme option will have no effect because it would only affect
the global help option. In order to actually use the expected theme, your end-user would need to
use prog command --clon-theme=foo -h. Depending on which cerebral emisphere (s)he prefers
to use, this may seem logical or not.

Finally, note that you can use the virtual command-line / specific synopsis technique re-
cursively to manage complicated command-line syntax, for instance alternating options and
non-options parts several times.

In the future, Clon may provide better ways to achieve this kind of things (a notion of
“sub-context” may be in order).

6.2 Programmatic Help Strings

So far, we’ve seen how to use the help function to implement a typical ——help option. This is
mostly intended for the end-user. There are also times when this function could be useful to

Chapter 6: Advanced Usage 31

you, the application developer. For instance, one could imagine that part of the compilation
phase would involve generating the help string in order to include it in the manual. Another
idea would be that ‘make install’ creates a REFCARD file in /usr/local/share/doc/my-app/
which contains the help string formatted with the refcard theme, etc..

In such situations, calling the help function might not be directly associated with an end-
user level option, or at least not ——help, and you might not want to honor the end-user level
settings for theme, search path, line-width, or highlighting either (remember that these settings
might come from the environment variables associated with --clon-theme, --clon-search-
path, --clon-line-width and --clon-highlight).

Because of this, the help function provides additional keys that allow you to override those
settings (they are in fact stored in the context object). The keys in question are: :theme,
:search-path, :1line-width and :highlight.

In addition to that, there is an :output-stream key which defaults to *standard-output*
which you could use for instance to write directly to a file. Note that there is no end-user level
access to this parameter.

33

7 Application Delivery

Delivering self-contained Lisp applications (whether as executables, or as scripts) is a concern
beyond the ANSI standard, and is implemented differently by each and every Lisp vendor. In
theory, Clon should have nothing to do with it; it’s just a library that you might want to
use in order to process the command-line. Unfortunately (and precisely because of the lack of
standardization), there are some non-orthogonal concerns that need to be dealt with carefully
for Clon to work properly in all situations.

The following sections provide some important information regarding the use of Clon in
standalone executables, or in regular interactive Lisp images. Before going into the details, let
me first introduce the executablep function, a predicate that returns t when called from a
standalone executable. You may find this function useful, for example in order to write portable
code deciding on whether or not to quit your application at the end of Clon’s main function.
You'd quit a dumped executable, but you’d continue to a REPL in an interactive variation.

7.1 Dumping Executables

Dumping standalone executables is ultimately the job of the Lisp implementation, but there are
also more or less portable wrappers to ease the process.

7.1.1 Dumping Methods

One method we have already encountered (see Chapter 3 [Quick Start], page 7) is Clon’s dump
macro. It’s a simple wrapper around each implementation’s native function for dumping the
current state of Lisp (in most cases anyway, but please read on).

Another one is ASDF’s program-op operation. This one works slightly differently: it allows
you to request the dumping of a specific ASDF system (along with all its dependencies), and,
just like dump, it allows you to provide a specific entry point for the standalone executable to
start somewhere. For example, assume that you define an ASDF system for the quick start
program as follows (the ECL bit will be explained shortly).

(asdf :defsystem :quickstart
:depends-on (#+ecl :net.didierverna.clon.setup :net.didierverna.clon)
:components ((:file "quickstart"))
rentry-point "cl-user::main")

Then, you can remove the call to Clon’s dump macro at the end of quickstart.lisp, and
instead call (asdf:operate 'asdf:program-op :quickstart) from a fresh REPL, and be done
with it. Almost. If you are wondering where your dumped executable has landed, it’s located
at the same place as the rest of the compiled files (ASDF’s output translations are involved).
Good luck finding it.

The demo/ directory included in the distribution contains all the infrastructure needed to
dump the demonstrations programs using both of these methods (when possible; See Sec-
tion 7.1.2 [Method Compatibility], page 34), and also to figure out the location of the executables
dump by ASDF. If you are interested, look into the Makefile there.

In order for Clon to work properly in a standalone executable, it needs to know that it’s
running in a dumped image rather than in a regular interactive session. This is because some
Lisps treat their own command-line differently, depending on the context. If you use either
Clon’s dump macro or ASDF’s program-op operation to dump, then, there is no problem. Clon
will detect that automatically.

If, on the other hand, you decide to go a different way (like, use your favorite Lisp imple-
mentation’s native function for dumping), then you absolutely need to tell Clon, by setting

34

The Clon User Manual

the *executablep* global variable to true, just before dumping. In fact, some implementa-
tions don’t really require it, but it’s always preferable to do it systematically, to be completely

portable.

7.1.2 Method Compatibility

Not all dumping methods work with all implementations either. The following table summarizes
the situation. And of course, don’t mix methods! For example, do not attempt to dump the
ASDF way if your code includes a call to dump.

Clon
ASDF

(1)

(2)

(3)

SBCL CMUCL CCL CLISP ECL ABCL Lispworks ACL

v v v (1) (2 (3) (4) (5)
v v v (1) (2) (4)

Dumping with both Clon and ASDF should work with CLISP in theory, but the
current trunk (2.49) seems to have a problem with its command-line in dumped
images. Its is possible to work around it by putting all command-line options after
a —-- separator, as for regular sessions (see Section 7.2 [Delivering Scripts]|, page 35).
This issue has been reported at https://sourceforge.net/p/clisp/bugs/745/.

Please note also that standalone CLISP executables continue to recognize lisp-
specific command-line options, when they are prefixed with --clisp-. Hence, you
should obviously avoid defining options by those names.

Dumping an ECL image with Clon is not supported because of the way ECL works.
In short, ECL requires every single Lisp file to be compiled to a system object file
first, so you would need to know all the Lisp files involved, and I mean, all: all
systems, all dependencies, etc. ASDF, on the other hand, has this information, so
the ASDF method is much preferred.

Another difference between ECL and the other Lisp compilers is that it doesn’t
require a particular function as the entry point for your executable, but instead
relies on having code to execute directly at the toplevel of some file. Clon helps
a little bit with this by making the dump macro expand to a call to the specified
function. That way, you can still have a more or less portable file including a call
to dump, should you choose to call ECL’s c:build-program all by yourself.

Finally, note also that Clon has some peculiar bootstrapping requirements with
its setup sub-system. These requirements seem to cause problems with ASDEF’s
way of dumping executables in ECL, so in order for it to work properly, your
own system depending on Clon needs to include an explicit dependency on
‘net.didierverna.clon.setup’ first, as shown in the example above, as well as
in the demonstration programs included in the distribution.

ABCL is a totally different beast because it’s a Java implementation, so there’s no
real notion of standalone executable. In order to be able to use a clonified program
portably with ABCL, the dump macro does as in ECL: it simply expands to a call
to the specified function.

There’s more to it than that though. It is possible to get closer to standalone
executables with ABCL by providing your whole application in a jar file, and
overriding ABCL’s entry point with a custom interpreter running the main func-
tion automatically. I have described this process in more details in the follow-
ing blog entry: http://www.didierverna.com/sciblog/index.php?post/2011/
01/22/Towards-ABCL-Standalone-Executables.

Clon helps you to do this to some extend. If the : dump configuration option is set (see

Section 8.1 [Configuration], page 39), then the dump macro doesn’t do as described
above, but instead dumps a Java file containing an alternate ABCL interpreter that

https://sourceforge.net/p/clisp/bugs/745/
http://www.didierverna.com/sciblog/index.php?post/2011/01/22/Towards-ABCL-Standalone-Executables
http://www.didierverna.com/sciblog/index.php?post/2011/01/22/Towards-ABCL-Standalone-Executables

Chapter 7: Application Delivery 35

you can compile and add to the original ABCL jar file, along with the Lisp file
containing the main function. If you want more details on this, you will need to
look at the Makefile in the demo/ directory and also at the file make/config.make.
You can also use make -n clon-dump LISP=ABCL to see it in (fake) action.

The file in question is created based on a template that is located under
etc/abcl/template. java in the distribution, so you can also edit this file, copy
it, or do whatever you want with it. Note that this file is not installed anywhere.
Every time dumping is requested, Clon looks for it in its own directory tree, so it
must stay there.

Also, if you ever want to modify its contents and keep it as a template for dumping
(for example, in order to use ‘gl:quickload’ instead of ‘asdf:load-system’, you
should know that this file is read in as a Lisp format string, and in must always
contain three format directives: the first one for the class name, the second one for
the program invocation name (argv[0]), and the thrid one for the file containing
the call to dump. Again, better take a look at how it is done in the demonstration
programs.

(4) Everything should work normally in Lispworks, but please remember that dumping
a complete application is only possible in the Professional or Enterprise editions.

(5) Finally, dumping a complete application with Allegro is complicated, but more
importantly only possible in the Enterprise edition. Because of that, Clon’s dumping
facility is currently limited to the dumplisp feature, which only dumps a Lisp image.
When dumped with ACL, the demonstration programs included in the distribution
also get their own shell wrappers for loading the concerned images.

7.2 Delivering Scripts

Although command-line processing is mostly useful for standalone executables, you may want
to preserve interactivity with your application during the development phase (for instance for
testing or debugging purposes), or you may even prefer to deliver possibly interactive scripts
with a rich user-level command-line anyway.

It is possible to use Clon in a script (maybe ending up in a REPL as well), that is, without
dumping anything. First of all, we have already seen that it is possible to use a virtual command-
line (see Section 6.1.2 [Using Different Command-Lines|, page 29). You can also use Clon with
the actual Lisp invocation’s command-line, although a word of advice is in order here.

7.2.1 Scripts Command-Line

As you might expect, the problem in that situation lies in the way the different Lisp implemen-
tations treat their own command-line. Guess what, it’s a mess. When you dump an executable
as described previsouly, the cmdline function will always contain user options only. When you
use Clon in a script, there may be a mix of vendor-specific options with application ones, in
which case the situation is as follows.

SBCL SBCL processes its own options and leaves the others unprocessed on the command-
line. This means that as long as there is no overlap between SBCL’s options and
yours, you can just put them all together on the command-line. In case of overlap
however, you need to separate SBCL’s options from yours with a call to -—end-
toplevel-options (that’s an SBCL specific option separator).

CMUCL CMUCL processes its own options, issues a warning about the options it doesn’t
know about, but in any case, it eats the whole command-line. Consequently, if
you want to provide options to your application, you need to put them after a --
separator. Note that you can still use a second such separator to provide Clon with

36 The Clon User Manual

both some options and a remainder (see Section “Option Separator” in The Clon
End-User Manual).

CCL, ECL, CLISP
CCL, ECL, and CLISP all process their own options but will abort on unknown
ones. Consequently, if you want to provide options to your application, you need to
put them after a —— separator. Note that you can still use a second such separator
to provide Clon with both some options and a remainder (see Section “Option
Separator” in The Clon End-User Manual).

ABCL ABCL processes its own options and leaves the others unprocessed on the command-
line. This means that as long as there is no overlap between ABCL’s options and
yours, you can just put them all together on the command-line. In case of overlap
however, you need to separate ABCL’s options from yours with a -- separator.
Note that you can still use a second such separator to provide Clon with both some
options and a remainder (see Section “Option Separator” in The Clon End-User
Manual).

Allegro Allegro processes its own options, issues only a warning about options it doesn’t
know of, and leaves anything after a -— alone. Consequently, if you want to provide
options to your application, you need to put them after a -- separator. Note that
you can still use a second such separator to provide Clon with both some options
and a remainder (see Section “Option Separator” in The Clon End-User Manual).

LispWorks

LispWorks processes its own options and ignores the other ones, but always leaves
everything on the command-line. It does not currently support -- as an option
separator either. Consequently, if you want to provide options to your application,
you need to put them after a —- separator, although you will get into trouble if any
option there is recognized by LispWorks itself. Note that you can still use a second
such separator to provide Clon with both some options and a remainder (see Section
“Option Separator” in The Clon End-User Manual).

7.2.2 Scripts Program Name

Another issue with scripts is that argv[0] may not be want you want in some situations. If
you run your script directly from a Lisp invocation such as ‘sbcl --script myscript.lisp’,
then it’s probably okay for argv[0] to be sbcl. On the other hand, suppose you have written
a shebang script called myscript, starting like this: ‘#!/usr/bin/sbcl --script’. Then, it’s
probably not okay to advertise /usr/bin/sbcl as the program name (which it is).

In order to compensate for this problem, the function make-context accepts a :progname
initarg which allows you to override Clon’s notion of argv [0]. Currently, the value of : progname
can be a non-empty string, or :environment, meaning to retrieve the value of the __CL_ARGVO
environment variable (which will be ignored if unset or empty).

Using a non-empty string allows you to hard-wire a pseudo-executable name with regular
shebang syntax, as follows.

#!/usr/bin/sbcl --script

(make-context :progname "myscript")
prog y p

Of course, this works for as long as your favorite nasty little end-user doesn’t rename the
script in question. A more flexible approach would be to retrieve the value of $0 from the shell,

Chapter 7: Application Delivery 37

which is dynamically computed as the actual script name. Here is a “multiline shebang” trick
to do that.

-

#| myscript.lisp --- or at least, that was its name originally ;-)
export __CL_ARGVO="$0"

exec sbcl --script "$0" "$@"

| #

(make-context :progname :environment)

\...)

Note how mixing shell and Lisp comments works here. The shell ignores the first line and
executes the next 2 ones. The subsequent Lisp invocation ignores the whole first four lines, but
gets the actual program name from the environment. . .

7.3 Distributing Clon Material

If you ship a clonified standalone executable, your clients may not have a properly installed
Clon distribution locally. Although this is not a requirement by any means, it may be worth
distributing some of Clon’s material with your application, for example, the end-user manual (see
The Clon End-User Manual), or the standard output themes located in the share/ directory.

39

8 Other Considerations

This chapter contains marginal or meta-level information, orthogonal to the library’s main
purpose.

8.1 Configuration

Some aspects of Clon’s behavior can be configured before the library is actually loaded. Clon
stores its user-level configuration (along with some other setup parameters) in another ASDF
system called ‘net.didierverna.clon.setup’ (and the eponym package). In order to configure
the library (I repeat, prior to loading it), you will typically do something like this:

(require "asdf")

(asdf:load-system :net.didierverna.clon.setup)
(net.didierverna.clon.setup:configure <option> <value>)

configure KEY VALUE [Function]
Set KEY to VALUE in the current Clon configuration.

Out of curiosity, you can also inquire the current configuration for specific options with the
following function.

configuration KEY [Function]
Return KEY’s value in the current Clon configuration.

Currently, the following options are provided.

:swank-eval-in-emacs

This option is only useful if you use Slime, and mostly if you plan on hacking Clon
itself. The library provides indentation information for some of its functions directly
embedded in the code. This information can be automatically transmitted to Emacs
when the ASDF system is loaded if you set this option to t. However, note that for
this to work, the Slime variable slime-enable-evaluate-in-emacs must also be
set to t in your Emacs session. If you’re interested to know how this process works,
I have described it in this blog entry (http://www.didierverna.net/blog/index.
php?post/2011/07/20/0ne-more-indentation-hack).

:restricted

Some non-ANSI features of Clon require external functionality that may not be
available in all contexts. Normally, Clon should autodetect this and switch to so-
called restricted mode at build-time (see Section 8.2 [Non-ANSI Features], page 39).
If Clon has failed to autodetect the problem (in which case I would like to know),
or if for some reason, you explicitly want to disable those features, you may set the
:restricted configuration option to t. Another way to do it, without even both-
ering with configuration is to just use the ‘net.didierverna.clon.core’ system
instead of the regular one.

:dump This option is only used by the ABCL port. Section 7.1 [Dumping Executables],
page 33, provides more information on its use.

8.2 Non-ANSI Features

One feature of Clon that is beyond the ANSI standard is terminal autodetection (it requires
an ioctl call and hence a foreign function interface). Terminal autodetection is used in several
situations, for turning on highlighting automatically and for detecting a terminal line width.

If, for some reason, terminal autodetection is not available, Clon will work in so-called re-
stricted mode. This means that -—clon-highlight=auto won’t work (highlighting will not be

http://www.didierverna.net/blog/index.php?post/2011/07/20/One-more-indentation-hack
http://www.didierverna.net/blog/index.php?post/2011/07/20/One-more-indentation-hack

40 The Clon User Manual

turned on automatically on a tty). For the same reason, unless otherwise specified via either
the COLUMNS environment variable or the -——clon-line-width option, terminal output will be
formatted for 80 columns regardless of the actual terminal width (see Section “Global Control”
in The Clon End-User Manual).

8.3 Version Numbering

As Clon evolves over time, you might one day feel the need for conditionalizing your code on the
version of the library. While the end-user of your application has limited means to access the
current version number of Clon (see Section “Clonification” in The Clon End-User Manual and
the built-in option --clon-version), you, the application programmer and Clon user, have a
finer grained access to it.

The first thing you can do to access the current version number of Clon is use the version
function (this is in fact the function bound to the --clon-version option).

version &optional (T'YPE :number) [Function]
Return the current version number of Clon. TYPE can be one of :number, :short or :long.
For :number, the returned value is a fixnum. Otherwise, it is a string.

A Clon version is characterized by 4 elements as described below.
e A major version number stored in the parameter *release-major-levelx.
e A minor version number, stored in the parameter *release-minor-levelx.

e A release status stored in the parameter *release-status*. The status of a release can
be :alpha, :beta, :rc (standing for “release candidate”) or :patchlevel. These are in
effect 4 levels of expected stability.

e A status-specific version number stored in the parameter *release-status-level*. Status
levels start at 1 (alpha 1, beta 1 and release candidate 1) except for stable versions, in which
case patch levels start at 0 (e.g. 2.4.0).

In addition to that, each version of Clon (in the sense major.minor, regardless of the status)
has a name, stored in the parameter *release-name*. The general naming theme for Clon is
“Great Jazz Musicians”. Anyone daring to mention Kenny G at that point will be shot on sight.

Here is how the version function computes its value.

e A version :number is computed as major . 10000 + minor . 100 + patchlevel, effectively
leaving two digits for each level. Note that alpha, beta and release candidate status are
ignored in version numbers (this is as if the corresponding status level was considered to be
always 0). Only stable releases have their level taken into account.

e A :short version will appear like this for unstable releases: 1.3a4, 2.5b8 or 4.2rcl. Remem-
ber that alpha, beta or release candidate levels start at 1. Patchlevels for stable releases
start at 0 but 0 is ignored in the output. So for instance, version 4.3.2 will appear as-is,
while version 1.3.0 will appear as just 1.3.

e A :long version is expanded from the short one, and includes the release name. For instance,
1.3 alpha 4 "Bill Evans", 2.5 beta 8 "Scott Henderson", 4.2 release candidate 1 "Herbie
Hancock" or 4.3.2 "Chick Corea". As for the short version, a patchlevel of 0 is ignored in
the output: 1.3 "Bill Evans".

Incidentally, but you will probably never need to use it, Clon also exports a variable named
xcopyright-years*, which, as its name suggests, is a string denoting the copyright years for
the whole project.

41

9 Conclusion

So that’s it I guess. You know all about Clon now. The next step is to actually use it to
clonify your favorite application, write new applications using it and contaminate the world
with standalone Common Lisp programs, featuring unprecedented command-line power and
thrill-a-minute option hacking.

Now, go Luke. The Attack of the Clon is ready to begin.

43

Appendix A Supported Platforms

Clon is an ASDF 3 library. It currently works on Unix (including MacOS X) and Windows
(Cygwin or MinGW) and has been ported to 8 Common Lisp implementations. It requires
editor-hints.named-readtables. The following table lists the supported platforms and some
additional, platform-dependent dependencies.

Compiler Minimum Version Dependencies

SBCL 1.0.56

CMU-CL 20b

CCL

ECL 11.1.2¢

CLISP cffi (optional)
ABCL 1.1.02

Allegro® cffi (optional)
LispWorks cffi (optional)

A.1 CLISP, Allegro and LispWorks specificities

As mentioned in the above table, CLISP, Allegro and LispWorks dependency on cffi is optional.
They need cffi in order to implement terminal autodetection only (note that many other
implementations come with their own foreign function interface). If cffi cannot be found when
the ASDF system is loaded (or in the case of CLISP, if it has been compiled without £fi
support), you get a big red blinking light and a warning but that’s all. Clon will still work,
although in restricted mode.

A.2 ABCL specificities

Clon’s ABCL port currently has two limitations:
e It only works in restricted mode (see Section 8.2 [Non-ANSI Features], page 39).

e Since Java doesn’t have a putenv or setenv function (!!), the modify-environment restart,
normally proposed when an environment variable is set to a bogus value, is unavailable (see
Section “Error Management” in The Clon End-User Manual).

1 more precisely, git revision 3e2e5f9dc3c5176ef6ef8d7794bfad3f1af8f8db

2 more precisely, svn trunk revision 140640

3 both standard and modern images are supported

45

Appendix B API Quick Reference

B.1 Setup

configure KEY VALUE [Function]
See Section 8.1 [Configuration], page 39.

configuration KEY [Function]
See Section 8.1 [Configuration], page 39.

B.2 Utilities

dump NAME FUNCTION &rest ARGS [Macro]
See Chapter 3 [Quick Start], page 7.

xexecutablepx* [Variable]
See Section 7.1.1 [Dumping Methods|, page 33,

executablep [Function]
See Chapter 7 [Application Delivery], page 33,

cmdline [Function]
See Section 4.4 [Option Retrieval], page 17.

nickname-package &optional NICKNAME [Function]
See Chapter 3 [Quick Start], page 7.

B.3 Initialization Phase API

make-text &key CONTENTS HIDDEN [Function]
make-0PTION :INITARG INITVAL. .. [Function]
make-group &key HEADER HIDDEN ITEM [Function]
make-synopsis &key POSTFIX ITEM (MAKE-DEFAULT t) [Function)]

See Section 4.1.3.1 [Constructors|, page 14, and Section 6.1.1 [Using Different Synopsis],
page 29.

defgroup (&key HEADER HIDDEN) &body FORMS [Macro]
See Section 4.1.3.3 [Group Definition], page 16.

defsynopsis (&key POSTFIX MAKE-DEFAULT) &body FORMS [Macro]
See Section 4.1 [Synopsis Definition], page 11, and Section 6.1.1 [Using Different Synopsis],
page 29.

synopsis [User Option]
See Section 6.1.1 [Using Different Synopsis], page 29.

make-context &key (SYNOPSIS *synopsis*) CMDLINE PROGNAME [Function]
(MAKE-CURRENT t)
See Section 4.2 [Context Creation], page 16, Section 6.1.1 [Using Different Synopsis], page 29,
Section 6.1.2 [Using Different Command-Lines], page 29, and Section 7.2.2 [Scripts Program
Name], page 36.

46 The Clon User Manual

B.4 Runtime Phase API

*xcontextx [User Option)]
See Section 6.1.3 [Using Multiple Contexts|, page 29.

with-context CONTEXT &body BODY [Function]
See Section 6.1.3 [Using Multiple Contexts|, page 29.

progname &key (CONTEXT *context™) [Function]
See Section 4.2.2 [Contextual Information|, page 16, and Section 6.1.3 [Using Multiple Con-
texts|, page 29.

remainder &key (CONTEXT *context™) [Function]
See Section 4.2.2 [Contextual Information], page 16, and Section 6.1.3 [Using Multiple Con-
texts|, page 29.

cmdline-options-p &key (CONTEXT *context™*) [Function]
See Section 4.2.2.3 [Command-Line Polling], page 17, and Section 6.1.3 [Using Multiple Con-
texts], page 29.

cmdline-p &key (CONTEXT *context*) [Function]
See Section 4.2.2.3 [Command-Line Polling], page 17, and Section 6.1.3 [Using Multiple Con-
texts], page 29.

getopt &key (CONTEXT *context™) SHORT-NAME LONG-NAME [Function]
OPTION
See Section 4.4.1 [Explicit Retrieval], page 18, and Section 6.1.3 [Using Multiple Contexts],
page 29.

getopt-cmdline &key (CONTEXT *context™) [Function]
See Section 4.4.2 [Sequential Retrieval|, page 18, and Section 6.1.3 [Using Multiple Contexts],
page 29.

multiple-value-getopt-cmdline (OPTION NAME VALUE SOURCE [Macro]
&key CONTEXT) &body BODY
do-cmdline-options (OPTION NAME VALUE SOURCE &key [Macro]

CONTEXT) &body BODY
See Section 4.4.2 [Sequential Retrieval], page 18, and Section 6.1.3 [Using Multiple Contexts],
page 29.

short-name OPTION [Reader]
long-name OPTION [Reader]
See Section 4.4.2 [Sequential Retrieval|, page 18.

help &key (CONTEXT *context™) (ITEM (synopsis context)) [Function]
(OUTPUT-STREAM *standard-output®) (SEARCH-PATH (search-path
context)) (THEME (theme context)) (LINE-WIDTH (line-width context))
(HIGHLIGHT (highlight context)))
See Section 4.5 [Help], page 19, Section 6.1.3 [Using Multiple Contexts]|, page 29, and Sec-
tion 6.2 [Programmatic Help Strings|, page 30.

Appendix B: API Quick Reference

B.5 Extension API

defoption CLASS SUPERCLASSES SLOTS &rest OPTIONS
see Section 5.1.1 [New Option Classes|, page 21,

check OPTION VALUE
See Section 5.1.2 [Value Check Protocol], page 22.

option-error OPTION
invalid-value VALUE COMMENT
See Section 5.1.2 [Value Check Protocol], page 22.

convert OPTION ARGUMENT

See Section 5.1.3 [Argument Conversion Protocol], page 23.

invalid-argument ARGUMENT COMMENT

See Section 5.1.3 [Argument Conversion Protocol|, page 23.

stringify OPTION VALUE
See Section 5.1.5 [Value Stringification Protocol], page 24.

B.6 Versioning API

version &optional (T'YPE :number)
See Section 8.3 [Version Numbering], page 40.

release-major-levelx
release-minor-levelx
release-status
release-status—-levelx
release—name
copyright-years

See Section 8.3 [Version Numbering], page 40.

47

[Macro]
[Generic Function)]

[Error Condition]
[Error Condition]

[Generic Function)]
[Error Condition]

[Generic Function)]

[Function]

[Parameter]
[Parameter]
[Parameter]
[Parameter]
[Parameter]
[Parameter]

Appendix C Indexes

C.1 Concepts

--clon-help................ ...l 12, 19
—-clon-highlight 14, 19, 30, 31, 43
--clon-line-width................ 13, 19, 30, 31, 43
--clon-search-path 13, 19, 30, 31
--clon-theme 13, 19, 30, 31
——clon-version..............iiiiiiiiiaa.. 13, 40
QUIP. . 34, 39
rrestricted 39
:swank-eval-in-emacs............... ...l 39

B

Built-In Groups. ... 12, 19
Built-In Option Types........ooviiiiiiiiia.. 12
Built-In Option Types, valued 13
Built-In Options, ——clon-help................ 12, 19

Built-In Options, =-clon-highlight. 14, 19, 30, 31, 43
Built-In Options, --clon-line-width. 13, 19, 30, 31,

43
Built-In Options, --clon-search-path. 13, 19, 30, 31
Built-In Options, --clon-theme........ 13, 19, 30, 31
Built-In Options, --clon-version............. 13, 40
C
Command-Line............... ... oL 17, 45
Command-Line, polling........................... 17
Command-Line, remainder............. 11, 16, 30, 35
Common Option Properties....................... 12
Common Option Properties, :description....... 12
Common Option Properties, :env-var 12, 18
Common Option Properties, :hidden............. 12
Common Option Properties, :long-name...... 12, 19
Common Option Properties, :short-name..... 12, 19
Common Valued Option Properties............... 13
Common Valued Option Properties,
rargument-name........................ 13, 14, 22
Common Valued Option Properties,
rargument-type..........................L 13, 14
Common Valued Option Properties,
:default-value........................ 13, 18, 24
Common Valued Option Properties,
:fallback-value....................... 13, 18, 24
Configuration i 39
Configuration Option, :dump.................. 34, 39
Configuration Option, :restricted............... 39
Configuration Option, :swank-eval-in-emacs 39
Constructors, for options objects.................. 25

(00} 0117« P 8, 16

49

Context, current.............coooviiiiiiiiia.... 29

D

Debugger. ..o 24
Debugger restarts oL 24
Dumping.......cooooiiiiii i 9, 24, 33

E

Enumerations (enum)............... 13, 21, 22, 24, 25
Enumerations (enum), properties, :enum. 13, 21, 22, 24

Extended Switches (xswitch)................. 14, 21
Extended Switches (xswitch), properties,

rargument-style...........l 14
Extended Switches (xswitch), properties,

CIUM . o o ettt e ettt e e et 14, 21
F
Files, one per option type............... 21
Flags (f1ag) .. .vvvvernniiiiiaiaannn 13, 18, 21
Group Header...........o i 12
GIOUDPS .+« ettt e e 12
Groups, built-in...........o oo 12, 19
Groups, hiddenl 12,19
Groups, i BroUpPS . . .«ovveeite i 12
Groups, in SyNOPSiS. .« ovvvvevneeennn.. 8,12, 16
H
Header, in group ... 12
Help String.................. 8, 11, 12, 15, 19, 24, 30
Help String, display......... ...t 8, 30
Hidden Groups ... 12, 19
Hidden Options ..., 12
Hidden Text.........cooiiiiiiiiii i 12
Initialization Phase 11, 16

L

Lisp Objects (1ispobj)ovvvriuinineinn.. 13, 27
Lisp Objects (1ispobj), properties, :typespec. 13, 27

50

(@)

Option Classes, user-defined 21
Option Constructors..........c.cooveeviiiiiea.... 25
Option Types, built-in..................... ... 12
Option Types, built-in, valued 13
Option Types, infiles........t 21
Option Types, valued......................oo... 13
OPtIoNS . v vt et e 12
Options Retrieval........ oo, 17
Options Retrieval, explicit 8, 18
Options Retrieval, sequential 9, 18
Options, built-in types............ ..o, 12
Options, built-in types, valued.................... 13
Options, built-in, -—~clon-help................ 12, 19

Options, built-in, --~clon-highlight. 14, 19, 30, 31, 43
Options, built-in, -=-clon-line-width. 13, 19, 30, 31,

43
Options, built-in, --clon-search-path. 13, 19, 30, 31
Options, built-in, -—~clon-theme 13, 19, 30, 31
Options, built-in, --clon-version 13, 40
Options, common properties...................... 12
Options, common properties, :description....... 12
Options, common properties, :env-var........ 12, 18
Options, common properties, :hidden............. 12
Options, common properties, :long-name 12, 19
Options, common properties, :short-name 12, 19
Options, creation......... ..., 15
Options, Flags (flag)c.covvvenn.n. 13, 18, 21
Options, hidden i i, 12
Options, In Groups.covviiiieennieenn.. 12
Options, in Synopsis. ..o, 8, 12
Options, valued, 13, 21
Options, valued, common properties 13
Options, valued, common properties,
rargument-name........................ 13, 14, 22
Options, valued, common properties,
rargument-type. ... 13, 14
Options, valued, common properties,
:default-value........................ 13, 18, 24
Options, valued, common properties,
:fallback-value....................... 13, 18, 24
Options, valued, Enumerations (enum). 13, 21, 22, 24,
25
Options, valued, Enumerations (enum), properties,
TEMUM. ..ttt e 13, 21, 22, 24

Options, valued, Extended Switches (xswitch). 14, 21
Options, valued, Extended Switches (xswitch),

properties, :argument-style................... 14
Options, valued, Extended Switches (xswitch),
properties, renum........... ... ool 14, 21
Options, valued, Lisp Objects (1ispobj) 13, 27
Options, valued, Lisp Objects (1ispobj), properties,
TEYPESPEC « i 13, 27
Options, valued, Paths (path) 13
Options, valued, Paths (path), properties, :type .. 13
Options, valued, Strings (stropt) 13, 21
Options, valued, Switches (switch) 14
Options, valued, Switches (switch), properties,
rargument-style................. ... 14

The Clon User Manual

P

Package, nicknames 8, 45
Paths (path) ... 13
Paths (path), properties, :type..........c.cooo... 13
Phase, initialization..................... ... 11, 16
Phase, runtime 17
Polling, of command-line 17
Postfix.....ooooiiii 8, 11, 30
Protocols, argument conversion................... 23
Protocols, value check 22
Protocols, value stringification.................... 24

R

Remainder, of command-line........... 11, 16, 30, 35
Restricted Mode, 39, 43
Retrieval, of options.............. ..o, 17
Retrieval, of options, explicit................... 8, 18
Retrieval, of options, sequential 9, 18
Runtime Phase 17, 29

S

Standard Themes, refcard....................... 30
Strings (STTOPt)vuerirneiiiiiii i 13, 21
Switches (switch) 14
Switches (switch), properties, :argument-style .. 14
SYNOPSIS « « v e et 8, 11
Synopsis, default L 29

3 G 11
Text, contents.......... o i i 11
Text, hidden oo i 12
Text, I Groupsvvviiiiiii i 12
Text, in Synopsis. ..o 8, 11
Themes 30
Themes, standard, refcard....................... 30

U

User-Defined Option Classes...................... 21

Vv

Value Check Protocol..............., 22
Value Stringification Protocol..................... 24
Valued Options...........ooooiiiiiiiiiiiiin.. 13, 21
Valued Options, common properties 13
Valued Options, common properties,
rargument-name........................ 13, 14, 22
Valued Options, common properties,
rargument-type..........................L 13, 14
Valued Options, common properties,
:default-value........................ 13, 18, 24
Valued Options, common properties,
:fallback-value....................... 13, 18, 24
Valued Options, Enumerations (enum) . 13, 21, 22, 24,
25

Valued Options, Enumerations (enum), properties,
TENUM. . oov ettt 13, 21, 22, 24
Valued Options, Extended Switches (xswitch). 14, 21

Appendix C: Indexes

Valued Options, Extended Switches (xswitch),

properties, :argument-style................... 14
Valued Options, Extended Switches (xswitch),

properties, :enum.......... ..., 14, 21
Valued Options, Lisp Objects (1ispobj)....... 13, 27
Valued Options, Lisp Objects (1ispobj), properties,

PEYPESPEC e 13, 27
Valued Options, Paths (path)..................... 13

Valued Options, Paths (path), properties, :type .. 13

o1
Valued Options, Strings (stropt) 13, 21
Valued Options, Switches (switch) 14
Valued Options, Switches (switch), properties,
rargument-style........... ...l 14
Values, source, command-line..................... 18
Values, source, default..................... 13, 18, 24
Values, source, environment 18
Values, source, fallback.................... 13, 18, 24

52

C.2 Functions

check, methods, Enumerations (enum)
closest-match....... i,

cmdline. ...t 17,
cmdline-options-p....................... 17,
cmdline-options-p, keys, :context...........
cmdline=p.......oiiiii
cmdline-p, keys, :context....................

cmdnline-—p ...t

configuration............. oL
configure........ il
Constructors, make-context......... 8, 16, 17,
Constructors, make-context, initargs,
:emdline ..o
Constructors, make-context, initargs,
:make-current.............o
Constructors, make-context, initargs,
IPTOGNAME .. vvvve ettt e
Constructors, make-context, initargs,
ISYNOPSIS ..t
Constructors, make-enum 15,
Constructors, make-flag 14,
Constructors, make-group 14,
Constructors, make-group, initargs, :header...
Constructors, make-group, initargs, :hidden...
Constructors, make-group, initargs, :item.....
Constructors, make-1ispobj
Constructors, make-0OPTION.c..o.u....
Constructors, make-path......................
Constructors, make-stropt....................
Constructors, make-switch....................
Constructors, make-synopsis.............. 14,
Constructors, make-synopsis, initargs, :item .
Constructors, make-synopsis, initargs,
:make-default..............
Constructors, make-synopsis, initargs,
tpostfix ...
Constructors, make-text 14,
Constructors, make-text, initargs, :contents .

Constructors, make-text, initargs, :hidden....
Constructors, make-xswitch
COMVETT vttt ettt et e et
convert, methods, Enumerations (enum)

D

defgroup................ 16, 25,
defgroup, options, :header................ 12,
defgroup, options, :hidden................ 12,
defoption............. il 21,
defsynopsis............. 8, 11, 14, 15, 17, 25,
defsynopsis, eXpansion
defsynopsis, items, group.............. 8, 12,
defsynopsis, items, options............... 8,
defsynopsis, items, text................... 8,
defsynopsis, options, :make-default.........
defsynopsis, options, :postfix............ 8,
do-cmdline-options 9, 19,
do-cmdline-options, options, :context.......

QUID - oo 9, 24, 33, 34,

16, 45
12, 45
11, 45
29, 45
11, 45
29, 46
30, 46
35, 45

The Clon User Manual

dumplisp.......... 35

E

executablep............iiiiiii 33, 45

G

Generic Functions, check 22, 47
Generic Functions, check, methods, Enumerations
(ERUM) « v vt 22
Generic Functions, convert................... 23, 47
Generic Functions, convert, methods, Enumerations
S R 24
Generic Functions, stringify................. 25, 47
Generic Functions, stringify, methods,
Enumerations (enum)........................... 25
getopt ... 8, 18, 29, 46
getopt, keys, :context 30, 46
getopt, keys, :long-name..................... 18, 46
getopt, keys, toption........... ...l 18, 46
getopt, keys, :short-name 8, 18, 46
getopt-cmdline........................... 19, 29, 46
getopt-cmdline, keys, :context.............. 30, 46

H

help. .o 8, 19, 29, 30, 46
help, keys, :context........... ...l 30, 46
help, keys, :highlight 31, 46
help, keys, titem........... ... ool 19, 46
help, keys, :line-width...................... 31, 46
help, keys, :output-stream................... 31, 46
help, keys, :search-path..................... 31, 46
help, keys, :theme............. 31, 46

L

list-to-string.............ooiiiiiiiiian. 22
long-name...........ooiiiiiiiiiiii 19, 46

M

make-context............. 8, 16, 17, 29, 45
make-context, initargs, :cmdline............. 29, 45
make-context, initargs, :make-current 29, 45
make-context, initargs, :progname............ 36, 45
make-context, initargs, :synopsis............ 29, 45
make—enum.............c.iiiiiiiinnnainn. 15, 25, 45
make-flag ... 14, 15, 45
MAKE—ZIOUP . ..o vttt eiieee e 14, 15, 45
make-group, initargs, theader................. 15, 45
make-group, initargs, :hidden................. 15, 45
make-group, initargs, :item................... 15, 45
make-lispobj............ ...l 15, 45
make-0OPTION. ...ttt 15, 45
make-path.............l 15, 45
make-sStropt..........l 15, 45
make-switch......... oo il 15, 45
make-SynopsSis........cooiiiiiiiiiiii... 14, 15, 45
make-synopsis, initargs, :item............... 15, 45

Appendix C: Indexes

make-synopsis, initargs, :make-default...... 29, 45
make-synopsis, initargs, :postfix............ 15, 45
make-text il 14, 15, 45
make-text, initargs, :contents 15, 45
make-text, initargs, :hidden.................. 15, 45
make-xswitch....... il 15, 45
multiple-value-getopt-cmdline 19, 29, 46
multiple-value-getopt-cmdline, options,

tcontext ... 30, 46

N

nickname-packageiiiiiaiii, 8, 45

P

PTOZNAME\ttt e, 16, 29, 46
progname, keys, :context..................... 30, 46

53
R
Readers, long-name.................ooeen... 19, 46
Readers, short-name.......................... 19, 46
remaindert 16, 29, 46
remainder, keys, :context.................... 30, 46
short-name............ oo 19, 46
stringify....... ... i 25, 47
stringify, methods, Enumerations (enum)........ 25
\%
VEISIOM . ovtt ittt 40, 47
with-context......... il 29, 46

54

C.3 Variables

*
KCOMEEXTH .o e 29, 46
xcopyright-years*........................... 40, 47
xexecutablep*l 33, 45
release-major-level 40, 47
release-minor-level 40, 47
xrelease-name*coieiiiiiiiaaaaan. 40, 47
release-status...........coiiiiiiiiinan. 40, 47
xrelease-status-level*..................... 40, 47
standard-output.............. 31, 46
KSYNOPSIS* ... 29, 45

C

CLON_HIGHLIGHT........oovvneennennnnn.. 19, 30, 31
CLON_LINE_WIDTHoovueeinennnnn... 19, 30, 31
CLON_SEARCH_PATHccoviieinai.. 19, 30, 31
CLON_THEMEottt 19, 30, 31
COLUMNS . . .o ev et e e e e e e 43

The Clon User Manual

E

Environment, CLON_HIGHLIGHT 19, 30, 31
Environment, CLON_LINE_WIDTH........... 19, 30, 31
Environment, CLON_SEARCH_PATH.......... 19, 30, 31
Environment, CLON_THEME 19, 30, 31
Environment, COLUMNSccoviuiiiiennnn.. 43

Parameter, *release-major-level* 40
Parameter, *release-minor-level* 40
Parameter, *release-name* 40
Parameter, *release-status*.................... 40
Parameter, *release-status-level*............. 40

S

slime-enable-evaluate-in-emacs 39

Appendix C: Indexes

C.4 Data Types

C

Classes, enumccovuuun.. 13, 21, 22, 24, 25
Classes, enum=baseeeireennnennneann... 21
Classes, £lag.oouueiuieniiiineanneenns 13, 18, 21
Classes, 1iSpobj.......oviiiiiiiiiii ... 13, 27
Classes, OPtiOmttt ettt 12, 21
Classes, Path....c.vvutvriiiiii i 13
Classes, Stroptovviiteiiiininieann.. 13, 21
Classes, SWAtCh.vieii e 14
Classes, valued-option 13, 21, 22
Classes, xsWitch.........oviiiiiiiiiiinne... 14, 21

E

editor-hints.named-readtables................. 43
GIUM . .ottt ettt e 13, 21, 22, 24, 25
enum-base........... . 21
Error Conditions, invalid-argument.......... 23, 47
Error Conditions, invalid-argument, slots,

argument ...l 23, 47
Error Conditions, invalid-argument, slots,

foTe) 1113 s 7O 23, 47
Error Conditions, invalid-value 22, 47
Error Conditions, invalid-value, slots,

Lo 1511 4 22,47
Error Conditions, invalid-value, slots, value. 22, 47
Error Conditions, option-error........... 22,24, 47
Error Conditions, option-error, slots,

option........... il 22, 24, 47

flag . oo 13, 18, 21

invalid-argument.................... ...l 23, 47
invalid-argument, slots, argument............ 23, 47
invalid-argument, slots, comment............. 23, 47
invalid-value ..., 22, 47
invalid-value, slots, comment 22,47

invalid-value, slots, value 22,47

55
1iSPODT ¢ et 13, 27
net.didierverna.clon...................... 5,7,21
net.didierverna.clon.core................... 5, 39
net.didierverna.clon.setup................ 34, 39
o) o <3 12, 21
Option Classes, enum............... 13, 21, 22, 24, 25
Option Classes, flag.........ccovuvennn... 13, 18, 21
Option Classes, 1ispobjcoon... 13, 27
Option Classes, pathcovuiiniiininenne.n. 13
Option Classes, stropto.... 13, 21
Option Classes, switch..........coouiiiiine... 14
Option Classes, xswitch...........covvuuee.... 14, 21
Option—error..............coiiiiiiiii... 22,24, 47
option-error, slots, option............... 22,24, 47
Packages, net.didierverna.clon.............. 7,21
Packages, net.didierverna.clon.setup.......... 39
Path .. 13
Stropt ... 13, 21
SWitCh .. 14
Systems, editor-hints.named-readtables 43
Systems, net.didierverna.clon................ 5,7
Systems, net.didierverna.clon.core 5, 39
Systems, net.didierverna.clon.setup....... 34, 39
valued-option...........coiiiiiiiiiiii 13, 21, 22
XSWITCH .ttt 14, 21

57

Appendix D Acknowledgments

The following people have contributed bug reports or fixes, suggestions, compiler support or any
other kind of help. You have my gratitude!

Alessio Stalla
Antony something
Erik Huelsmann

Erik Winkels
Frangois-René Rideau
Jake Connor

Jan Moringen

James Wright

Martin Simmons
Nikodemus Siivola
Sam Steingold
Olivier Certner
Thomas Fitzsimmons
Pritam Baral

	Table of Contents
	Copying
	1 Introduction
	2 Installation
	3 Quick Start
	Full Source
	Explanation

	4 Using Clon
	Synopsis Definition
	Synopsis Items
	Text
	Options
	Groups

	Built-In Option Types
	Common Properties
	Flags
	Common Valued Option Properties
	Built-In Valued Options

	Advanced Synopsis Creation
	Constructors
	Advantages
	Group Definition

	Context Creation
	Making A Context
	Contextual Information
	Program Name
	Command-Line Remainder
	Command-Line Polling

	Integrity Checks
	Option Retrieval
	Explicit Retrieval
	Sequential Retrieval

	Help

	5 Extending Clon
	New Option Types
	New Option Classes
	Value Check Protocol
	Argument Conversion Protocol
	Error Management
	Value Stringification Protocol
	Constructor Functions

	Extension Tips
	Incremental Option Types
	Lisp Option Abuse

	6 Advanced Usage
	Multiple Instances
	Using Different Synopsis
	Using Different Command-Lines
	Using Multiple Contexts
	Potential Uses

	Programmatic Help Strings

	7 Application Delivery
	Dumping Executables
	Dumping Methods
	Method Compatibility

	Delivering Scripts
	Scripts Command-Line
	Scripts Program Name

	Distributing Clon Material

	8 Other Considerations
	Configuration
	Non-ANSI Features
	Version Numbering

	9 Conclusion
	A Supported Platforms
	CLISP, Allegro and LispWorks specificities
	ABCL specificities

	B API Quick Reference
	Setup
	Utilities
	Initialization Phase API
	Runtime Phase API
	Extension API
	Versioning API

	C Indexes
	Concepts
	-
	:
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	O
	P
	R
	S
	T
	U
	V

	Functions
	C
	D
	E
	G
	H
	L
	M
	N
	P
	R
	S
	V
	W

	Variables
	*
	C
	E
	P
	S

	Data Types
	C
	E
	F
	I
	L
	N
	O
	P
	S
	V
	X

	D Acknowledgments

