
Method Combinations for Programming Languages with Multiple Dispatch
Supervisor / Contact Pr. Didier Verna <didier.verna@epita.fr>
Company / Lab EPITA Research Lab
Work Address 14–16 rue Voltaire, le Kremlin-Bicêtre, France
Dates Flexible
Funding Probable 750€/month gross unless self-funded (to be confirmed)
Keywords Object-Oriented Programming, Generic Functions

Multiple Dispatch, Orthogonality

Context
In the traditional Object-Oriented (OO) approach (Smalltalk, and later C++, Java, etc.), methods syntactically
belong to classes and the dynamic dispatch mechanism selects the appropriate (most specific) one based on
the class of the object through which the method is invoked. For example, in a C++ or Java call such as
object.method(...), the concrete class of object is retrieved at run-time, and its super-hierarchy is traversed
bottom-up until a matching method is found. This process known as “inclusion polymorphism”, is also called
“message-passing” or “single dispatch” [10]: method selection is based on a single object, the receiver of the
message.

Single dispatch is known to have its limitations. In particular, it does not play well with static type safety [3]
and is not suited to situations in which there is no single privileged receiver for a message, as in symmetrical
operations such as binary methods [2]: should we write obj1.equal(obj2), or obj2.equal(obj1)?

Multiple dispatch [4, 5] is a form of dynamic dispatch in which any number of arguments can be specialized
and used for method selection. If we syntactically write method(this, ...) instead of object.method(...),
it becomes apparent that multiple dispatch is a more general form of polymorphism: single dispatch is simply
multiple dispatch with only the first argument specialized. Because multiple dispatch doesn’t grant any argu-
ment a particular status (message receiver), methods (herein called “multi-methods”) are naturally decoupled
from classes and method (or generic function) calls look like ordinary function calls: one now simply writes
method(obj, ...) or equal(obj1, obj2). The existence of multi-methods thus pushes dynamic dispatch
one step further in the direction of Separation of Concerns (SOC) and orthogonality [8]: polymorphism and
inheritance are clearly separated from each other.

Common Lisp [11] was the first OO language to be standardized with native support for multiple dispatch
through the Common Lisp Object System (CLOS) [6, 9, 1, 7]. Since then, other languages have also adopted
multi-methods as a core construct, notably Dylan (a descendant of Lisp) and Julia. It as been shown that
multiple dispatch solves many, if not all, of the problems of the traditional OO approach [12, 13].

Yet another improvement over the classical OO approach lies in the concept of “method combination”. In the
traditional approach, the dynamic dispatch algorithm is hardwired: every polymorphic call ends up executing the
most specific method available (applicable) and using other (less specific) ones requires calling them explicitly,
which is sub-optimal. Indeed, as soon as a method needs to call another one, as in Class::method(...); for
C++, super.method(...); for Java, or even (call-next-method) for Lisp, the method in question ends up
doing two different things at the same time: its actual job, and a form of ad-hoc manual dispatch. Method
combinations make it possible for generic functions to use custom dispatch algorithms, hereby removing the
need for explicit method chaining. For example, a generic function using the and method combination would
implicitly call all the applicable methods (not necessarily by order of specificity), and combine their results with
a logical and.

Method combinations were originally introduced in CLOS. At the time, the concept was not completely sta-
bilized, but it has been recently refined [14, 15]. Along with multiple dispatch, method combinations constitute
one more step towards SOC: a generic function can now be seen as a 2D concept: 1. a set of methods and 2. a
specific way of combining them. Unfortunately, few languages support them, and even fewer at their core.

Project
The purpose of this internship is to study the applicability of Lisp’s method combinations to other programming
languages already equipped with multiple dispatch. The applicant will start by producing a comprehensive state-
of-the-art review of multiple dispatch support per language (core feature, emulation via a user-level library,
etc.). The review should also include descriptions of any discovered functionality even remotely connected
to the concept of method combinations. For example, some languages have an “advice” mechanism, some
have method “modifiers” (before, after, around) which are directly inspired from CLOS’s standard method
combination qualifiers, etc.

1

mailto:didier.verna@epita.fr


In a second step, the applicant will pick one or two languages and implement a proper support for CLOS’s
standard and built-in method combinations. We are particularly interested in two languages, Python and
Julia, but for different reasons. Both of these are quite popular. Multiple dispatch is at the core of Julia’s
design, so method combinations would be a valuable addition to it. Python’s support for multiple dispatch
is only available via third-party libraries, but this “limitation” could in fact make it easier to add method
combinations. Ultimately however, the choice will be discussed when appropriate.

Finally, note that this project, if successful, will constitute the foundation for an upcoming Ph.D. thesis on
the very same topic. In particular, further avenues to explore (including, but not limited to) are core support
for method combinations when only emulations exist, support for custom method combinations (as opposed
to built-in ones only), investigating method combinations for single dispatch, and the implications of static vs.
dynamic type checking on the concept.

Profile
The applicant should already have a solid experience in multiple programming languages and OO (Lisp would be
a plus, but it is not strictly required), and a deep interest in programming paradigms, SOC, orthogonality, and
expressivity in general. The applicant should be already familiar with fundamental concepts of programming
language design and implementation such as environments, lexical / dynamic scope, binding, etc.. Finally, the
applicant should not be afraid of delving into large code bases, either third-party libraries or language sources.

References
[1] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales, and David A.

Moon. Common Lisp object system specification. ACM SIGPLAN Notices, 23(SI):1–142, 1988.

[2] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott F. Smith, Valery Trifonov, Gary T.
Leavens, and Benjamin C. Pierce. On binary methods. 1(3):221–242, 1995.

[3] Giuseppe Castagna. Covariance and contravariance: conflict without a cause. ACM Transactions on
Programming Languages and Systems, 17(3):431–447, 1995.

[4] Giuseppe Castagna. Object-Oriented Programming, A Unified Foundation. Progress in Theoretical Com-
puter Science. Birkhäuser Boston, 2012.

[5] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions with subtyp-
ing. SIGPLAN Lisp Pointers, 5(1):182–192, January 1992.

[6] Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp Object System: An overview. pages
151–170, 1987.

[7] Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow. CLOS: integrating object-oriented and functional
programming. Communications of the ACM, 34(9):29–38, 1991.

[8] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman to Master. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[9] Sonja E. Keene. Object-Oriented Programming in Common Lisp: a Programmer’s Guide to CLOS. Addison-
Wesley, 1989.

[10] Kristen Nygaard and Ole-Johan Dahl. The development of the SIMULA languages. SIGPLAN Notices,
13(8):245–272, August 1978.

[11] Ansi. American National Standard: Programming Language – Common Lisp. ANSI X3.226:1994 (R1999),
1994.

[12] Didier Verna. Binary methods programming: the CLOS perspective. Journal of Universal Computer
Science, 14(20):3389–3411, 2008.

[13] Didier Verna. Revisiting the visitor: the Just Do It pattern. Journal of Universal Computer Science,
16(2):246–271, 2010.

[14] Didier Verna. Method combinators. In 11th European Lisp Symposium, pages 32–41, Marbella, Spain,
April 2018.

[15] Didier Verna. A MOP-based implementation for method combinations. In ELS 2023, the 16th European
Lisp Symposium, pages –, Amsterdam, Netherlands, April 2023.

2

http://www.jucs.org
http://www.jucs.org
http://www.jucs.org/jucs_14
http://www.jucs.org/jucs_14_20
http://www.jucs.org
http://www.jucs.org/jucs_16
http://www.jucs.org/jucs_16_2

