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Context
In the traditional Object-Oriented (OO) approach (Smalltalk, and later C++, Java, etc.), methods syntactically
belong to classes and the dynamic dispatch mechanism selects the appropriate (most specific) one based on
the class of the object through which the method is invoked. For example, in a C++ or Java call such as
object.method(...), the concrete class of object is retrieved at run-time, and its super-hierarchy is traversed
bottom-up until a matching method is found. This process known as “inclusion polymorphism”, is also called
“message-passing” or “single dispatch” [10]: method selection is based on a single object, the receiver of the
message.

Single dispatch is known to have its limitations. In particular, it does not play well with static type safety [3]
and is not suited to situations in which there is no single privileged receiver for a message, as in symmetrical
operations such as binary methods [2]: should we write obj1.equal(obj2), or obj2.equal(obj1)?

Multiple dispatch [4, 5] is a form of dynamic dispatch in which any number of arguments can be specialized
and used for method selection. If we syntactically write method(this, ...) instead of object.method(...),
it becomes apparent that multiple dispatch is a more general form of polymorphism: single dispatch is simply
multiple dispatch with only the first argument specialized. Because multiple dispatch doesn’t grant any argu-
ment a particular status (message receiver), methods (herein called “multi-methods”) are naturally decoupled
from classes and method (or generic function) calls look like ordinary function calls: one now simply writes
method(obj, ...) or equal(obj1, obj2). The existence of multi-methods thus pushes dynamic dispatch
one step further in the direction of Separation of Concerns (SOC) and orthogonality [8]: polymorphism and
inheritance are clearly separated from each other.

Common Lisp [11] was the first OO language to be standardized with native support for multiple dispatch
through the Common Lisp Object System (CLOS) [6, 9, 1, 7]. Since then, other languages have also adopted
multi-methods as a core construct, notably Dylan (a descendant of Lisp) and Julia. It as been shown that
multiple dispatch solves many, if not all, of the problems of the traditional OO approach [12, 13].

Yet another improvement over the classical OO approach lies in the concept of “method combination”. In the
traditional approach, the dynamic dispatch algorithm is hardwired: every polymorphic call ends up executing the
most specific method available (applicable) and using other (less specific) ones requires calling them explicitly,
which is sub-optimal. Indeed, as soon as a method needs to call another one, as in Class::method(...); for
C++, super.method(...); for Java, or even (call-next-method) for Lisp, the method in question ends up
doing two different things at the same time: its actual job, and a form of ad-hoc manual dispatch. Method
combinations make it possible for generic functions to use custom dispatch algorithms, hereby removing the
need for explicit method chaining. For example, a generic function using the and method combination would
implicitly call all the applicable methods (not necessarily by order of specificity), and combine their results with
a logical and.

Method combinations were originally introduced in CLOS. At the time, the concept was not completely sta-
bilized, but it has been recently refined [14, 15]. Along with multiple dispatch, method combinations constitute
one more step towards SOC: a generic function can now be seen as a 2D concept: 1. a set of methods and 2. a
specific way of combining them. Unfortunately, few languages support them, and even fewer at their core.

Project
The purpose of this internship is to study the applicability of Lisp’s method combinations to other programming
languages already equipped with multiple dispatch. The applicant will start by producing a comprehensive state-
of-the-art review of multiple dispatch support per language (core feature, emulation via a user-level library,
etc.). The review should also include descriptions of any discovered functionality even remotely connected
to the concept of method combinations. For example, some languages have an “advice” mechanism, some
have method “modifiers” (before, after, around) which are directly inspired from CLOS’s standard method
combination qualifiers, etc.
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In a second step, the applicant will pick one or two languages and implement a proper support for CLOS’s
standard and built-in method combinations. We are particularly interested in two languages, Python and
Julia, but for different reasons. Both of these are quite popular. Multiple dispatch is at the core of Julia’s
design, so method combinations would be a valuable addition to it. Python’s support for multiple dispatch
is only available via third-party libraries, but this “limitation” could in fact make it easier to add method
combinations. Ultimately however, the choice will be discussed when appropriate.

Finally, note that this project, if successful, will constitute the foundation for an upcoming Ph.D. thesis on
the very same topic. In particular, further avenues to explore (including, but not limited to) are core support
for method combinations when only emulations exist, support for custom method combinations (as opposed
to built-in ones only), investigating method combinations for single dispatch, and the implications of static vs.
dynamic type checking on the concept.

Profile
The applicant should already have a solid experience in multiple programming languages and OO (Lisp would be
a plus, but it is not strictly required), and a deep interest in programming paradigms, SOC, orthogonality, and
expressivity in general. The applicant should be already familiar with fundamental concepts of programming
language design and implementation such as environments, lexical / dynamic scope, binding, etc.. Finally, the
applicant should not be afraid of delving into large code bases, either third-party libraries or language sources.
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